DOI QR코드

DOI QR Code

Wireless charging system for unmanned aerial vehicles using lightweight and compact receiver modules

  • Yuhong Tian (College of Mechanical and Electrical Engineering, Northeast Forestry University) ;
  • Zhenjie Li (College of Mechanical and Electrical Engineering, Northeast Forestry University) ;
  • Hao Liu (College of Mechanical and Electrical Engineering, Northeast Forestry University) ;
  • Yiqi Liu (College of Mechanical and Electrical Engineering, Northeast Forestry University) ;
  • Mingfei Ban (College of Mechanical and Electrical Engineering, Northeast Forestry University) ;
  • Junyuan Zheng (College of Mechanical and Electrical Engineering, Northeast Forestry University)
  • Received : 2022.08.25
  • Accepted : 2022.11.14
  • Published : 2023.04.20

Abstract

This paper proposes a wireless charging system (WCS) for unmanned aerial vehicles (UAVs) that features a lightweight and compact receiver module and constant current/constant voltage (CC/CV) charging. Optimizing the LCC-none compensation topology reduces the weight and volume of the receiver module mainly by avoiding the secondary-side resonant capacitors. In addition, high system performance similar to that of the LCC-S compensation topology is achieved. A magnetic coupler with dual power transfer channels is designed using the specifc structure of the UAV. The reasonable charging zone is determined by optimizing the magnetic coupler parameters. Besides, a primary-side PI-controlled Buck converter is used to realize CC/CV charging with a high system efciency under a suitable misalignment range to avoid the secondary-side circuit and control complexity. Finally, both simulation and experimental results verify the feasibility of the designed WCS. The total weight of the receiver coil is only 54 g. During 5 A CC charging, the tested maximum output power and system efciency values are 90 W and 87.2%, respectively.

Keywords

Acknowledgement

This work was supported by the National Natural Science Foundation of China under Grant no. 52107001, in part by China Postdoctoral Science Foundation under Grant no. 2022M710641, and in part by Fundamental Research Funds for the Central Universities under Grant no. 2572021BF04.

References

  1. He, T., Zeng, Y., Hu, Z.: Research of multi-rotor UAVs detailed autonomous inspection technology of transmission lines based on route planning. IEEE Access 7, 114955-114965 (2019) https://doi.org/10.1109/ACCESS.2019.2935551
  2. Lin, Z., Liu, H.H.T., Wotton, M.: Kalman flter-based large-scale wildfre monitoring with a system of UAVs. IEEE Trans. Ind. Electron. 66(1), 606-615 (2018)
  3. Zhang, Z., Pang, H., Georgiadis, A., Cecati, C.: Wireless power transfer-an overview. IEEE Trans. Ind. Electron. 66(2), 1044-1058 (2019) https://doi.org/10.1109/TIE.2018.2835378
  4. Bi, Z., Kan, T., Mi, C.C., Zhang, Y., Zhao, Z., Keoleian, G.A.: A review of wireless power transfer for electric vehicles: prospects to enhance sustainable mobility. Appl. Energy. 179, 413-425 (2016) https://doi.org/10.1016/j.apenergy.2016.07.003
  5. Gonzalez, J.M.G., Cabrera, A.T., Aguado, J.A.: Model predictive control to maximize the efciency in EV wireless chargers. IEEE Trans. Ind. Electron. 69(2), 1244-1253 (2022) https://doi.org/10.1109/TIE.2021.3057006
  6. Hossain, A., Darvish, P., Mekhilef, S., Tey, K.S., Tong, C.W.: A new coil structure of dual transmitters and dual receivers with integrated decoupling coils for increasing power transfer and misalignment tolerance of wireless EV charging system. IEEE Trans. Power Electron. 69(8), 7869-7878 (2022) https://doi.org/10.1109/TIE.2021.3108697
  7. Darvish, P., Mekhilef, S., Illias, H.A.B.: A novel S-S-LCLCC compensation for three-coil WPT to improve misalignment and energy efciency stifness of wireless charging system. IEEE Trans. Power Electron. 36(2), 1341-1355 (2021) https://doi.org/10.1109/TPEL.2020.3007832
  8. Li, Z., Liu, H., Tian, Y., Liu, Y.: Constant current/voltage charging for primary-side controlled wireless charging system without using dual-side communication. IEEE Trans. Power Electron. 36(12), 13562-13577 (2021) https://doi.org/10.1109/TPEL.2021.3088272
  9. Zhang, Y., Yan, Z., Liang, Z., Li, S., Rim, C.T.: A high-power wireless charging system using LCL-N topology to achieve a compact and low-cost receiver. IEEE Trans. Power Electron. 35(1), 131-137 (2020) https://doi.org/10.1109/TPEL.2019.2914363
  10. Song, K., Ma, B., Yang, G., Jiang, J., Wei, R., Zhang, H., Zhu, C.: A rotation-lightweight wireless power transfer system for solar wing driving. IEEE Trans. Power Electron. 34(9), 8816-8830 (2019) https://doi.org/10.1109/TPEL.2018.2886910
  11. Cai, C., Wu, S., Jiang, L., Zhang, Z., Yang, S.: A 500-W wireless charging system with lightweight pick-up for unmanned aerial vehicles. IEEE Trans. Power Electron. 35(8), 7721-7724 (2020) https://doi.org/10.1109/TPEL.2020.2964023
  12. Song, Y., Sun, X., Wang, H., Dong, W., Ji, Y.: Design of charging coil for unmanned aerial vehicle-enabled wireless power transfer. In: 2018 8th International Conference on Power and Energy Systems (ICPES) (2019)
  13. Campi,T., Cruciani, S., Rodriguez, G., Feliziani, M.: Coil design of a wireless power transfer charging system for a drone. In: 2016 IEEE Conference on Electromagnetic Field Computation (CEFC) (2017)
  14. Gati, E., Kampitsis, G., Manias, S.: Variable frequency controller for inductive power transfer in dynamic conditions. IEEE Trans. Power Electron. 32(2), 1684-1696 (2017) https://doi.org/10.1109/TPEL.2016.2555963
  15. Vu, B.-V., Phan, V.-T., Dahidah, M., Pickert, V.: Multiple output inductive charger for electric vehicles. IEEE Trans. Power Electron. 34(8), 7350-7368 (2019) https://doi.org/10.1109/TPEL.2018.2882945
  16. Mai, R., Liu, Y., Li, Y., Yue, P., Cao, G., He, Z.: An active rectifier based maximum efficiency tracking method using an additional measurement coil for wireless power transfer. IEEE Trans. Power Electron 33(1), 716-728 (2018) https://doi.org/10.1109/TPEL.2017.2665040
  17. Li, K., Tan, S.C., Hui, R.S.Y.: Single-switch-regulated resonant WPT receiver. IEEE Trans. Power Electron. 34(11), 10386-10391 (2019) https://doi.org/10.1109/TPEL.2019.2917552
  18. Jiang, Y., Wang, L., Wang, Y., Liu, J., Wu, M., Ning, G.: Analysis, design, and implementation of WPT system for EV's battery charging based on optimal operation frequency range. IEEE Trans. Power Electron 34(7), 6890-6905 (2019) https://doi.org/10.1109/TPEL.2018.2873222
  19. Kavimandan, U.D., Mahajan, S.M., Neste, C.W.V.: Analysis and demonstration of a dynamic ZVS angle control using a tuning capacitor in a wireless power transfer system. IEEE J. Emerg. Sel. Top. Power Electron 9(2), 1876-1890 (2021) https://doi.org/10.1109/JESTPE.2020.2997822
  20. Li, Y., et al.: Extension of ZVS region of series-series WPT systems by an auxiliary variable inductor for improving efciency. IEEE Trans. Power Electron 36(7), 7513-7525 (2021) https://doi.org/10.1109/TPEL.2020.3042011
  21. Zeng, H., Yang, S., Peng, F.Z.: Design consideration and comparison of wireless power transfer via harmonic current for PHEV and EV wireless charging. IEEE Trans. Power Electron. 32(8), 5943-5952 (2016) https://doi.org/10.1109/TPEL.2016.2616111
  22. Hui, S.Y.: Planar wireless charging technology for portable electronic products and Qi. Proc. IEEE 101(6), 1290-1301 (2013) https://doi.org/10.1109/JPROC.2013.2246531
  23. Li, Z., Liu, H., Huo, Y., He, J., Tian, Y., Liu, J.: High-misalignment tolerance wireless charging system for constant power output using dual transmission channels with magnetic fux controlled inductors. IEEE Trans. Power Electron. 37(11), 13930-13945 (2022) https://doi.org/10.1109/TPEL.2022.3181231
  24. Feng, H., Cai, T., Duan, S., Zhang, X., Hu, H., Niu, J.: A dualside-detuned series-series compensated resonant converter for wide charging region in a wireless power transfer system. IEEE Trans. Ind. Electron. 65(3), 2177-2188 (2018) https://doi.org/10.1109/TIE.2017.2745455
  25. Li, Y., Mai, R., Lu, L.: Analysis and transmitter currents decomposition based control for multiple overlapped transmitters based WPT systems considering cross couplings. IEEE Trans. Power Electron. 32(2), 1829-1842 (2018)
  26. Li, Y., et al.: A new magnetic coupler with high rotational misalignment tolerance for unmanned aerial vehicles wireless charging. IEEE Trans. Power Electron. 37(11), 12986-12991 (2022) https://doi.org/10.1109/TPEL.2022.3184335
  27. Gordhan,U., Jayalath, S.: Wireless power transfer system for an unmanned aerial vehicle. In: 2021 12th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC) (2021)