DOI QR코드

DOI QR Code

Passivity-based controller for a high-energy-quality active rectifier-DC motor system: an FPGA implementation

  • Ruben Heredia‑Barba (Instituto de Electronica Y Mecatronica, Universidad Tecnologica de La Mixteca, Carretera Huajuapan-Acatlima) ;
  • Jose Antonio Juarez‑Abad (Instituto de Electronica Y Mecatronica, Universidad Tecnologica de La Mixteca, Carretera Huajuapan-Acatlima) ;
  • Jesus Linares‑Flores (Instituto de Electronica Y Mecatronica, Universidad Tecnologica de La Mixteca, Carretera Huajuapan-Acatlima) ;
  • Marco Antonio Contreras‑Ordaz (Instituto de Electronica Y Mecatronica, Universidad Tecnologica de La Mixteca, Carretera Huajuapan-Acatlima) ;
  • Jorge Luis Barahona‑Avalos (Instituto de Electronica Y Mecatronica, Universidad Tecnologica de La Mixteca, Carretera Huajuapan-Acatlima)
  • Received : 2022.01.09
  • Accepted : 2022.11.14
  • Published : 2023.04.20

Abstract

This study presents a passivity-based controller for a single-phase active rectifier-DC motor (SPAR-DCM) system. The main objective in the mechanical stage (DCM) is to regulate and maintain the desired angular speed of the motor under sudden load torque changes. Moreover, in the electric power stage, namely single-phase active rectifier (SPAR), the power factor (PF) should stay close to unity. We designed an Online Algebraic Estimator (OAE) to estimate the load torque parameter, adapted to the linear controller based on the exact static error dynamic passive output feedback (ESEDPOF) to minimize its effects. To synchronize the SPAR-DCM system with the grid, we used a second-order general integrator phase-locked loop to generate the necessary reference signals for the ESEDPOF controller. The arithmetic processing is programmed at medium-scale field-programmable gate array Spartan-6 XC6SLX16 through a detailed architecture design in 32 bits and in floating point, according to the standard IEEE-754. Experimental results verified the correctness and effectiveness of the proposed control algorithm. Furthermore, we demonstrated that the PF value is close to unity through power quality measurements.

Keywords

References

  1. Silva-Ortigoza, R., Hernandez-Marquez, E., Roldan-Caballero, A., Tavera-Mosqueda, S., Marciano-Melchor, M., Garcia-Sanchez, J.R., Hernandez-Guzman, V.M., Silva-Ortigoza, G.: Sensorless tracking control for a "full-bridge buck inverter-dc motor" system: passivity and fatness- based design. IEEE Access 9, 132191-132204 (2021) https://doi.org/10.1109/ACCESS.2021.3112575
  2. Hernandez-Marquez, E., Garcia-Sanchez, J.R., Silva-Ortigoza, R., Antonio-Cruz, M., Hernandez-Guzman, V.M., Taud, H., Marcelino- Aranda, M.: Bidirectional tracking robust controls for a dc/dc buck converter-dc motor. Comp. Optim. Simul. Power Syst. Hindawi 1(2), 1-10 (2018)
  3. Trentin, A., Sala, G., Tarisciotti, L., Galassini, A., Degano, M., Connor, P.H., Golovanov, D., Gerada, D., Xu, Z., La Rocca, A., Eastwick, C.N., Pickering, S.J., Wheeler, P., Clare, J.C., Gerada, C.: Research and realization of high-power medium-voltage active rectifier concepts for future hybrid-electric aircraft generation. IEEE Trans. Industr. Electron. 68(12), 11684-11695 (2021) https://doi.org/10.1109/TIE.2020.3040692
  4. Ming, W., Zhong, Q.: A single-phase rectifier having two independent voltage outputs with reduced fundamental frequency voltage ripples. IEEE Trans. Power Electron. 30(7), 3662-3673 (2015) https://doi.org/10.1109/TPEL.2014.2348871
  5. Cheng, X.-F., Liu, C., Wang, D., Zhang, Y.: State-of-the-art review on soft-switching technologies for non-isolated dc-dc converters. IEEE Access 9, 119235-119249 (2021) https://doi.org/10.1109/ACCESS.2021.3107861
  6. Guerrero, E., Guzman, E., Linares, J., Martinez, A., Guerrero, G.: FPGA-based active disturbance rejection velocity control for a parallel dc/dc buck converter-dc motor system. IET Power Electron. 13(2), 356-367 (2020) https://doi.org/10.1049/iet-pel.2019.0832
  7. Linares-Flores, J., Sira-Ramirez, H.: A smooth starter for a dc machine: a fatness-based approach. In: (ICEEE). In: 1st International Conference on Electrical and Electronics Engineering, pp. 589-594 (2004)
  8. Linares-Flores, J., Sira-Ramirez, H.: Sliding mode-delta modulation GPI control of a dc motor through a buck converter. In: (2nd IFAC). Symposium System, Structure Control, pp. 405-409 (2004)
  9. Michalik, J., Molnar, J., Peroutka, Z.: Traction single-phase current- source active rectifier: Main problems and proposed solutions. In: 2009 13th European Conference on Power Electronics and Applications, pp. 1-7 (2009)
  10. Poornima, R., Suganya, P., Kumaresan, N., Subbiah, M.: Operating modes of single-phase thyristor converter fed dc drives using phase angle control scheme - a monograph. In: 2006 IEEE International Conference on Industrial Technology, pp. 2402-2407 (2006)
  11. Nejabatkhah, F., Li, Y.W., Tian, H.: Power quality control of smart hybrid ac/dc microgrids: an overview. IEEE Access 7, 52295-52318 (2019) https://doi.org/10.1109/ACCESS.2019.2912376
  12. Dong, D., Luo, F., Zhang, X., Boroyevich, D., Mattavelli, P.: Grid- interface bidirectional converter for residential dc distribution systems - part 2: Ac and dc interface design with passive components minimization. IEEE Trans. Power Electron. 28(4), 1667-1679 (2013) https://doi.org/10.1109/TPEL.2012.2213614
  13. IEEE Power and Energy Society: IEEE Recommended practice and requirements for harmonic control in electric power systems, 5th edn. IEEE-SA Standards Board, New Jersey (2014)
  14. Namgoong, G., Choi, E., Park, W., Lee, B., Park, H., Ma, H., Bien, F.: A 6.78 MHz, 95.0% peak efficiency monolithic two-dimensional calibrated active rectifier for wirelessly powered implantable biomedical devices. IEEE Transact. Biomed. Circuits Syst. 15(3), 509-521 (2021) https://doi.org/10.1109/TBCAS.2021.3083276
  15. Ann, S., Lee, B.K.: Analysis of impedance tuning control and synchronous switching technique for a semibridgeless active rectifier in inductive power transfer systems for electric vehicles. IEEE Trans. Power Electron. 36(8), 8786-8798 (2021) https://doi.org/10.1109/TPEL.2021.3049546
  16. Singh, B., Singh, B.N., Chandra, A., Al-Haddad, K., Pandey, A., Kothari, D.P.: A review of single-phase improved power quality ac-dc converters. IEEE Trans. Industr. Electron. 50(5), 962-981 (2003) https://doi.org/10.1109/TIE.2003.817609
  17. Siebert, T., Troedson, A., Ebner, S.: Ac to dc power conversion now and in the future. In: Record of Conference Papers. In: IEEE Incorporated Industry Applications Society. Forty-Eighth Annual Conference. 2001 Petroleum and Chemical Industry Technical Conference (Cat. No.01CH37265), pp. 145-152 (2001)
  18. Pavlova, Y.V., Grigorii, B.V.: The synthesis of a control system of the active rectifier. In: 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), pp. 941-944 (2018)
  19. He, X., Geng, H., Yang, G.: Reinvestigation of single-phase flls. IEEE. Access 7, 13178-13188 (2019) https://doi.org/10.1109/ACCESS.2019.2891973
  20. Golestan, S., Guerrero, J.M., Musavi, F., Vasquez, J.C.: Singlephase frequency-locked loops: a comprehensive review. IEEE Trans. Power Electron. 34(12), 11791-11812 (2019) https://doi.org/10.1109/TPEL.2019.2910247
  21. Xie, M., Wen, H., Zhu, C., Yang, Y.: DC offset rejection improvement in single-phase sogi-pll algorithms: methods review and experimental evaluation. IEEE Access 5, 12810-12819 (2017) https://doi.org/10.1109/ACCESS.2017.2719721
  22. Rodriguez-Andina, J.J., Valdes-Pena, M.D., Moure, M.J.: Advanced features and industrial applications of FPGAs-a review. IEEE Trans. Industr. Inf. 11(4), 853-864 (2015) https://doi.org/10.1109/TII.2015.2431223
  23. Linares-Flores, J., Sira-Ramirez, H., Yescas-Mendoza, E., Vasquez- Sanjuan, J.J.: A comparison between the algebraic and the reduced order observer approaches for on-line load torque estimation in a unit power factor rectifier-dc motor system. Asian J. Control 14(1), 45-57 (2012) https://doi.org/10.1002/asjc.234
  24. Sira-Ramirez, H.: Control design techniques in power electronics devices. Springer, Germany (2006)
  25. van der Schaft, A.: L2-Gain and passivity techniques in nonlinear control, second edition (communications and control engineering). Springer, Switzerland (2000)
  26. Juarez-Abad, J.A., Sandoval-Garcia, A.P., Linares-Flores, J., Guerrero- Castellanos, J.F., Banuelos-Sanchez, P., ContrerasOrdaz, M.A.: FPGA implementation of passivity-based control and output load algebraic estimation for transformerless multilevel active rectifier. IEEE Trans. Industr. Inf. 15(4), 1877-1889 (2019) https://doi.org/10.1109/TII.2018.2865445
  27. Dagbagi, M., Hemdani, A., Idkhajine, L., Naouar, M.W., Monmasson, E., Slama-Belkhodja, I.: ADC-based embedded real-time simulator of a power converter implemented in a low-cost FPGA: application to a fault-tolerant control of a grid-connected voltage-source rectifier. IEEE Trans. Industr. Electron. 63(2), 1179-1190 (2016)  https://doi.org/10.1109/TIE.2015.2491883