DOI QR코드

DOI QR Code

Correction method for calculating junction temperature considering parasitic effects in SiC MOSFETs

  • Fan Liu (Key Laboratory of Control Theory and Applications in Complicated System, Tianjin University of Technology) ;
  • Mingxing Du (Key Laboratory of Control Theory and Applications in Complicated System, Tianjin University of Technology) ;
  • Jinliang Yin (Key Laboratory of Control Theory and Applications in Complicated System, Tianjin University of Technology) ;
  • Chao Dong (Key Laboratory of Control Theory and Applications in Complicated System, Tianjin University of Technology) ;
  • Ziwei Ouyang (Key Laboratory of Control Theory and Applications in Complicated System, Tianjin University of Technology)
  • Received : 2022.05.30
  • Accepted : 2022.11.10
  • Published : 2023.04.20

Abstract

The turn-on change rate of drain current diDS(on)/dt is an electrical parameter that is suitable for the online monitoring of junction temperature in SiC MOSFETs. In practical applications, the change of an external circuit changes the temperature-sensitive characteristic of diDS(on)/dt. In this paper, a SiC MOSFET in a Buck converter is taken as the research object. First, it is theoretically derived and experimentally verified that the power loop inductance and drive loop resistance are parasitic parameters that affect the temperature-sensitive characteristic of diDS(on)/dt. Second, according to the spectrum peak characteristics caused by the drain-source turn-of oscillation voltage of the SiC MOSFET, the theoretical relationship between the diDS(on)/dt temperature-sensitive characteristic and the peak of the drain-source turn-of oscillation voltage is studied. It is concluded that the spectrum peak can reflect the change of the diDS(on)/dt temperature-sensitive characteristic caused by the change of the parasitic parameters. Based on the above research, a model of a modified diDS(on)/dt temperature-sensitive characteristic considering parasitic effect is established in this paper. Through experimental verification, this model can largely eliminate the junction temperature monitoring error caused by the change of the external circuit.

Keywords

Acknowledgement

This work was supported by Tianjin Municipal Science and Technology Project (No. 20YDTPJC00510).

References

  1. Millan, J., Godignon, P., Perpina, X., et al.: A survey of wide bandgap power semiconductor devices. IEEE Trans. Power Electron. 29(5), 2155-2163 (2014) https://doi.org/10.1109/TPEL.2013.2268900
  2. Hamada, K., Nagao, M., Ajioka, M., et al.: SiC-emerging power device technology for next-generation electrically powered environmentally friendly vehicles. IEEE Trans. Electron Devices 62(2), 278-285 (2015) https://doi.org/10.1109/TED.2014.2359240
  3. Yang, S., Bryant, A., Mawby, P., et al.: An industry-based survey of reliability in power electronic converters. IEEE Trans. Ind. Appl. 47(3), 1441-1451 (2011) https://doi.org/10.1109/TIA.2011.2124436
  4. Yang, F., Ugur, E., Akin, B.: Evaluation of aging's effect on temperature-sensitive electrical parameters in SiC MOSFETs. IEEE Trans Power Electron. 35(6), 6315-6331 (2020) https://doi.org/10.1109/TPEL.2019.2950311
  5. Grifo, A., Wang, J., Colombage, K., et al.: Real-time measurement of temperature sensitive electrical parameters in SiC power MOSFETs. IEEE Trans. Industr. Electron. 65(3), 2663-2671 (2018) https://doi.org/10.1109/TIE.2017.2739687
  6. Stella, F., Pellegrino, G., Armando, E., et al.: Online junction temperature estimation of SiC power MOSFETs through on-state voltage mapping. IEEE Trans. Ind. Appl. 54(4), 3453-3462 (2018) https://doi.org/10.1109/TIA.2018.2812710
  7. Ni, Z., Zheng, S., Chinthavali, M.S., et al.: Investigation of dynamic temperature-sensitive electrical parameters for medium-voltage SiC and Si Devices. IEEE J Emerg Select Top Power Electron. 9(5), 6408-6423 (2021) https://doi.org/10.1109/JESTPE.2021.3054018
  8. Zhang, Z., et al.: Online junction temperature monitoring using intelligent gate drive for SiC power devices. IEEE Trans. Power Electron. 34(8), 7922-7932 (2019) https://doi.org/10.1109/TPEL.2018.2879511
  9. Zhang, Q., Zhang, P.: An online junction temperature monitoring method for SiC MOSFETs based on a novel gate conduction model. IEEE Trans Power Electron. 36(10), 11087-11096 (2021) https://doi.org/10.1109/TPEL.2021.3072436
  10. Gonzalez, J.O., Alatise, O., Hu, J., et al.: An investigation of temperature-sensitive electrical parameters for SiC power MOSFETs. IEEE Trans. Power Electron. 32(10), 7954-7966 (2017) https://doi.org/10.1109/TPEL.2016.2631447
  11. Henn, J., et al.: Intelligent gate drivers for future power converters. IEEE Trans. Power Electron. 37(3), 3484-3503 (2022) https://doi.org/10.1109/TPEL.2021.3112337
  12. Li, X., Lu, Y., Ni, X., et al.: Novel driver circuit for switching performance improvements in SiC MOSFETs. J. Power Electron. 20(6), 1583-1591 (2020) https://doi.org/10.1007/s43236-020-00132-5
  13. Qin, H., Ma, C., Zhu, Z., et al.: Influence of parasitic parameters on switching characteristics and layout design considerations of SiC MOSFETs. J. Power Electron. 18(4), 1255-1267 (2018)
  14. Sun, P., et al.: An online junction temperature monitoring correction method for SiC MOSFETs at different parasitic parameters. IEEE J Emerg Select Top Power Electron. 10(5), 5007 (2021)
  15. Jahdi, S., Alatise, O., Ran, L., et al.: Analytical modeling of switching energy of silicon carbide schottky diodes as functions of dIDS/dt and temperature. IEEE Trans. Power Electron. 30(6), 3345-3355 (2015) https://doi.org/10.1109/TPEL.2014.2333474
  16. Fritz, N., Engelmann, G., Stippich, A., et al.: Toward an in-depth understanding of the commutation processes in a SiC MOSFET switching cell including parasitic elements. IEEE Trans. Ind. Appl. 56(4), 4089-4101 (2020) https://doi.org/10.1109/TIA.2020.2995331
  17. Zhang, Z., Guo, B., Wang, F.: Evaluation of switching loss contributed by parasitic ringing for fast switching wide band-gap devices. IEEE Trans Power Electron. 34(9), 9082-9094 (2019) https://doi.org/10.1109/TPEL.2018.2883454
  18. Liu, T., Ning, R., Wong, T.T.Y., et al.: modeling and analysis of SiC MOSFET switching oscillations. IEEE J Emerg Select Top Power Electron. 4(3), 747-756 (2016) https://doi.org/10.1109/JESTPE.2016.2587358
  19. Bi, C., Lu, R., Li, H.: Prediction of electromagnetic interference noise in SiC MOSFET module. IEEE Trans Circuits Syst II. 66(5), 853-857 (2019) https://doi.org/10.1109/TCSII.2019.2908971
  20. Dalal, D.N., et al.: Impact of power module parasitic capacitances on medium-voltage SiC MOSFETs switching transients. IEEE J Emerg Select Top Power Electron. 8(1), 298-310 (2020) https://doi.org/10.1109/JESTPE.2019.2939644