DOI QR코드

DOI QR Code

Passivity-based control strategy for hexagonal converter under unbalanced power grid

  • Yusheng Lai (College of Automation Engineering, Shanghai University of Electric Power) ;
  • Qiming Cheng (College of Automation Engineering, Shanghai University of Electric Power) ;
  • Xin Zhang (College of Automation Engineering, Shanghai University of Electric Power)
  • Received : 2022.06.10
  • Accepted : 2022.11.03
  • Published : 2023.04.20

Abstract

When a hexagonal converter (Hexverter) is applied to high-power renewable energy generation such as offshore low-frequency transmission, using traditional PID control to ensure the stable global operation and strong robustness of the system is difficult due to the random fluctuation of renewable energy, system parameter uptake, its non-linear characteristics, and the possible unbalanced grid situation. This paper proposes a non-linear passivity-based control (PBC) strategy for Hexverter under an unbalanced grid. First, the passivity and stability of Hexverter objects are analyzed based on PBC theory. The unbalanced PBC strategy of Hexverter is then designed and derived. Three control objectives are designed according to different control requirements. Finally, the simulation system of the Hexverter under an unbalanced grid is built on Matlab/Simulink to verify the effectiveness and superiority of the proposed unbalanced PBC method. The simulation results show that the proposed method has fewer control parameters, faster response, lower harmonic content, and better overall control effect than PID control.

Keywords

Acknowledgement

This project is supported by the National Natural Science Foundation of China (61905139).

References

  1. Luo, J.J., Zhang, X.P., Xue, Y.: Harmonic analysis of modular multilevel matrix converter for fractional frequency transmission system. IEEE Trans. Power Deliv. 35(03), 1209-1219 (2020) https://doi.org/10.1109/TPWRD.2019.2939312
  2. Liu, S.Q., Wang, X.F., Ning, L.H.: Integrating ofshore wind power via fractional frequency transmission system. IEEE Trans. Power Deliv. 32(03), 1253-1261 (2017) https://doi.org/10.1109/TPWRD.2015.2435993
  3. Yu, J.L., Xia, C.Y.: Operation and control schemes of a novel direct AC-AC modular multilevel converter. Int. J. Electr. Power Energy Syst. 139, 108037 (2022)
  4. Wang, Y.Q., Yuan, B., Liu, W.J.: Equivalent hexagonal MMC control under single-port open-circuit fault of nonagonal MMC. High Volt. Eng. (2021). https://doi.org/10.13336/j.1003-6520.hve. 20210933
  5. Wang, X.W., Lin, H., Deng, J.: Optimization modulation pattern for space vector modulation method of matrix converter in practical application. Proc. CSEE 31(30), 7-15 (2011)
  6. Erickson, R.W., Al-Naseem, O.A.: A new family of matrix converters. In: The 27th Annual Conference of the IEEE Industrial Electronics Society. 2, pp. 1515-1520 (2001).
  7. Mustafa, A.T., Jia, L., Hassan, B.: A dual VSG-based M3C control scheme for frequency regulation support of a remote AC grid via low-frequency AC transmission system. IEEE Access. 8, 66085- 66094 (2020) https://doi.org/10.1109/ACCESS.2020.2985386
  8. Tang, Y. J., Zhang Z. R., Xu, Z.: Low frequency transmission scheme for ofshore wind power based on active modular multilevel matrix converter. Autom. Electr. Power Syst. 46(08):113-122.
  9. Robles-Campos, H.R., Mancilla-David, F.: Detailed assessment of modulation strategies for Hexverter-based modular multilevel converters. Energies 15(6), 2132-2132 (2022) https://doi.org/10.3390/en15062132
  10. Baruschka, L., Karwatzki, D., Hofen, M. V.: Low-speed drive operation of the modular multilevel converter hexverter down to zero frequency. In: Energy Conversion Congress and Exposition (ECCE), pp. 5407-5414 (2014)
  11. Baruschka, L., Mertens, A.: A new three-phase AC/AC modular multilevel converter with six branches in hexagonal confguration. IEEE Trans. Ind. Appl. 49(03), 1400-1410 (2013) https://doi.org/10.1109/TIA.2013.2252593
  12. Meng, Y.Q., Liu, B., Luo, H.Y.: Control scheme of hexagonal modular multilevel direct converter for ofshore wind power integration via fractional frequency transmission system. Modern Power Syst. Clean Energy 6(01), 168-180 (2018) https://doi.org/10.1007/s40565-017-0311-2
  13. Karwatzki, D., Baruschka, L., Hofen, M.V.: Branch energy control for the modular multilevel direct converter Hexverter. In: Energy Conversion Congress and Exposition (ECCE), pp. 1613-1622 (2014).
  14. Zhang, C., Jiang, D.Z., Zhang, X.: The study of a battery energy storage system based on the hexagonal modular multilevel direct AC/AC converter (hexverter). IEEE Access. 6, 43343-43355 (2018) https://doi.org/10.1109/ACCESS.2018.2854843
  15. Meng, Y.Q., Zou, Y.C., Li, H.X.: A global asymptotical stable control scheme for a Hexverter in fractional frequency transmission systems. J. Modern Power Syst. Clean Energy 7(06), 1495- 1506 (2019) https://doi.org/10.1007/s40565-019-0549-y
  16. Cheng, Q.M., Xie, Y.Q., Ma, X.Q.: Control strategy of modular multilevel matrix converter under unbalanced grid conditions. High Volt. Eng. 06(01), 1-10 (2022)
  17. Liu, S.Q., Saeedifard, M., Wang, X.F.: Analysis and control of the modular multilevel matrix converter under unbalanced grid conditions. IEEE J. Emerg. Select. Top. Power Electron. 06(04), 1979-1989 (2018) https://doi.org/10.1109/JESTPE.2018.2812723
  18. Zhao, J.P., Wu, W.M., Shuai, Z.K.: Robust control parameters design of PBC controller for LCL-fltered grid-tied inverter. IEEE Trans. Power Electron. 35(08), 8102-8115 (2020) https://doi.org/10.1109/TPEL.2019.2963200
  19. Gil-Gonzalez, W.J., Garces, A., Fosso, O.B.: Passivity-based control of power systems considering hydroturbine with surge tank. IEEE Trans. Power Syst. 35(03), 2002-2011 (2020) https://doi.org/10.1109/TPWRS.2019.2948360
  20. Cheng, Q.M., Wang, Y.J., Cheng, Y.M.: Research on passive control strategy of MMC-SAPF under non ideal conditions. Proc. CSEE 39(23), 7023-7032 (2019)