DOI QR코드

DOI QR Code

Nrf2 in TIME: The Emerging Role of Nuclear Factor Erythroid 2-Related Factor 2 in the Tumor Immune Microenvironment

  • Jialin Feng (Division of Cellular Medicine, School of Medicine, University of Dundee) ;
  • Oliver J. Read (Division of Cellular Medicine, School of Medicine, University of Dundee) ;
  • Albena T. Dinkova-Kostova (Division of Cellular Medicine, School of Medicine, University of Dundee)
  • Received : 2022.11.23
  • Accepted : 2022.12.12
  • Published : 2023.03.31

Abstract

Nuclear factor erythroid 2-related factor 2 (Nrf2) mediates the cellular antioxidant response, allowing adaptation and survival under conditions of oxidative, electrophilic and inflammatory stress, and has a role in metabolism, inflammation and immunity. Activation of Nrf2 provides broad and long-lasting cytoprotection, and is often hijacked by cancer cells, allowing their survival under unfavorable conditions. Moreover, Nrf2 activation in established human tumors is associated with resistance to chemo-, radio-, and immunotherapies. In addition to cancer cells, Nrf2 activation can also occur in tumor-associated macrophages (TAMs) and facilitate an anti-inflammatory, immunosuppressive tumor immune microenvironment (TIME). Several cancer cell-derived metabolites, such as itaconate, L-kynurenine, lactic acid and hyaluronic acid, play an important role in modulating the TIME and tumor-TAMs crosstalk, and have been shown to activate Nrf2. The effects of Nrf2 in TIME are context-depended, and involve multiple mechanisms, including suppression of proinflammatory cytokines, increased expression of programmed cell death ligand 1 (PD-L1), macrophage colony-stimulating factor (M-CSF) and kynureninase, accelerated catabolism of cytotoxic labile heme, and facilitating the metabolic adaptation of TAMs. This understanding presents both challenges and opportunities for strategic targeting of Nrf2 in cancer.

Keywords

Acknowledgement

We thank the Medical Research Council (MR/W023806/1) and the Ninewells Cancer Campaign for funding our research.

References

  1. Ahmed, K.M., Veeramachaneni, R., Deng, D., Putluri, N., Putluri, V., Cardenas, M.F., Wheeler, D.A., Decker, W.K., Frederick, A.I., Kazi, S., et al. (2022). Glutathione peroxidase 2 is a metabolic driver of the tumor immune microenvironment and immune checkpoint inhibitor response. J. Immunother. Cancer 10, e004752.
  2. Baird, L., Kensler, T.W., and Yamamoto, M. (2022). Novel NRF2-activated cancer treatments utilizing synthetic lethality. IUBMB Life 74, 1209-1231. https://doi.org/10.1002/iub.2680
  3. Baker, C.P., Phair, I.R., Brenes, A.J., Atrih, A., Ryan, D.G., Bruderer, R., Dinkova-Kostova, A.T., Lamont, D.J., Arthur, J.S.C., and Howden, A.J.M. (2022). DIA label-free proteomic analysis of murine bone-marrow-derived macrophages. STAR Protoc. 3, 101725.
  4. Bambouskova, M., Gorvel, L., Lampropoulou, V., Sergushichev, A., Loginicheva, E., Johnson, K., Korenfeld, D., Mathyer, M.E., Kim, H., Huang, L.H., et al. (2018). Electrophilic properties of itaconate and derivatives regulate the IkappaBzeta-ATF3 inflammatory axis. Nature 556, 501-504. https://doi.org/10.1038/s41586-018-0052-z
  5. Basler, T., Jeckstadt, S., Valentin-Weigand, P., and Goethe, R. (2006). Mycobacterium paratuberculosis, Mycobacterium smegmatis, and lipopolysaccharide induce different transcriptional and post-transcriptional regulation of the IRG1 gene in murine macrophages. J. Leukoc. Biol. 79, 628-638. https://doi.org/10.1189/jlb.0905520
  6. Best, S.A., De Souza, D.P., Kersbergen, A., Policheni, A.N., Dayalan, S., Tull, D., Rathi, V., Gray, D.H., Ritchie, M.E., McConville, M.J., et al. (2018). Synergy between the KEAP1/NRF2 and PI3K pathways drives non-small-cell lung cancer with an altered immune microenvironment. Cell Metab. 27, 935-943.e4. https://doi.org/10.1016/j.cmet.2018.02.006
  7. Bischoff, P., Trinks, A., Obermayer, B., Pett, J.P., Wiederspahn, J., Uhlitz, F., Liang, X., Lehmann, A., Jurmeister, P., Elsner, A., et al. (2021). Single-cell RNA sequencing reveals distinct tumor microenvironmental patterns in lung adenocarcinoma. Oncogene 40, 6748-6758. https://doi.org/10.1038/s41388-021-02054-3
  8. Carreno, M., Pires, M.F., Woodcock, S.R., Brzoska, T., Ghosh, S., Salvatore, S.R., Chang, F., Khoo, N.K.H., Dunn, M., Connors, N., et al. (2022). Immunomodulatory actions of a kynurenine-derived endogenous electrophile. Sci. Adv. 8, eabm9138.
  9. Certo, M., Tsai, C.H., Pucino, V., Ho, P.C., and Mauro, C. (2021). Lactate modulation of immune responses in inflammatory versus tumour microenvironments. Nat. Rev. Immunol. 21, 151-161. https://doi.org/10.1038/s41577-020-0406-2
  10. Chen, F., Elgaher, W.A.M., Winterhoff, M., Bussow, K., Waqas, F.H., Graner, E., Pires-Afonso, Y., Casares Perez, L., de la Vega, L., Sahini, N., et al. (2022). Citraconate inhibits ACOD1 (IRG1) catalysis, reduces interferon responses and oxidative stress, and modulates inflammation and cell metabolism. Nat. Metab. 4, 534-546. https://doi.org/10.1038/s42255-022-00577-x
  11. Choi, B.H., Ryoo, I., Sim, K.H., Ahn, H.J., Lee, Y.J., and Kwak, M.K. (2022). High levels of hyaluronic acid synthase-2 mediate NRF2-driven chemoresistance in breast cancer cells. Biomol. Ther. (Seoul) 30, 368-379. https://doi.org/10.4062/biomolther.2022.074
  12. Chowdhry, S., Zhang, Y., McMahon, M., Sutherland, C., Cuadrado, A., and Hayes, J.D. (2013). Nrf2 is controlled by two distinct β-TrCP recognition motifs in its Neh6 domain, one of which can be modulated by GSK-3 activity. Oncogene 32, 3765-3781. https://doi.org/10.1038/onc.2012.388
  13. Consonni, F.M., Bleve, A., Totaro, M.G., Storto, M., Kunderfranco, P., Termanini, A., Pasqualini, F., Ali, C., Pandolfo, C., Sgambelluri, F., et al. (2021). Heme catabolism by tumor-associated macrophages controls metastasis formation. Nat. Immunol. 22, 595-606. https://doi.org/10.1038/s41590-021-00921-5
  14. Cuadrado, A., Rojo, A.I., Wells, G., Hayes, J.D., Cousin, S.P., Rumsey, W.L., Attucks, O.C., Franklin, S., Levonen, A.L., Kensler, T.W., et al. (2019). Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases. Nat. Rev. Drug Discov. 18, 295-317. https://doi.org/10.1038/s41573-018-0008-x
  15. Dayalan Naidu, S. and Dinkova-Kostova, A.T. (2020). KEAP1, a cysteine-based sensor and a drug target for the prevention and treatment of chronic disease. Open Biol. 10, 200105.
  16. Dayalan Naidu, S., Muramatsu, A., Saito, R., Asami, S., Honda, T., Hosoya, T., Itoh, K., Yamamoto, M., Suzuki, T., and Dinkova-Kostova, A.T. (2018). C151 in KEAP1 is the main cysteine sensor for the cyanoenone class of NRF2 activators, irrespective of molecular size or shape. Sci. Rep. 8, 8037.
  17. Dinkova-Kostova, A.T., Holtzclaw, W.D., Cole, R.N., Itoh, K., Wakabayashi, N., Katoh, Y., Yamamoto, M., and Talalay, P. (2002). Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Proc. Natl. Acad. Sci. U. S. A. 99, 11908-11913. https://doi.org/10.1073/pnas.172398899
  18. Dinkova-Kostova, A.T., Liby, K.T., Stephenson, K.K., Holtzclaw, W.D., Gao, X., Suh, N., Williams, C., Risingsong, R., Honda, T., Gribble, G.W., et al. (2005). Extremely potent triterpenoid inducers of the phase 2 response: correlations of protection against oxidant and inflammatory stress. Proc. Natl. Acad. Sci. U. S. A. 102, 4584-4589. https://doi.org/10.1073/pnas.0500815102
  19. Donelan, W., Dominguez-Gutierrez, P.R., and Kusmartsev, S. (2022). Deregulated hyaluronan metabolism in the tumor microenvironment drives cancer inflammation and tumor-associated immune suppression. Front. Immunol. 13, 971278.
  20. Fahrmann, J.F., Tanaka, I., Irajizad, E., Mao, X., Dennison, J.B., Murage, E., Casabar, J., Mayo, J., Peng, Q., Celiktas, M., et al. (2022). Mutational activation of the NRF2 pathway upregulates kynureninase resulting in tumor immunosuppression and poor outcome in lung adenocarcinoma. Cancers (Basel) 14, 2543.
  21. Fan, K., Zan, X., Zhi, Y., Yang, Y., Hu, K., Zhang, X., Zhang, X., Zhao, S., Chen, K., Gong, X., et al. (2022). Immune response gene 1 deficiency impairs Nrf2 activation and aggravates liver fibrosis in mice. Biochem. Biophys. Res. Commun. 607, 103-109. https://doi.org/10.1016/j.bbrc.2022.03.110
  22. Feng, R., Morine, Y., Ikemoto, T., Imura, S., Iwahashi, S., Saito, Y., and Shimada, M. (2018). Nrf2 activation drive macrophages polarization and cancer cell epithelial-mesenchymal transition during interaction. Cell Commun. Signal. 16, 54.
  23. Fiore, A., Zeitler, L., Russier, M., Gross, A., Hiller, M.K., Parker, J.L., Stier, L., Kocher, T., Newstead, S., and Murray, P.J. (2022). Kynurenine importation by SLC7A11 propagates anti-ferroptotic signaling. Mol. Cell 82, 920-932.e7. https://doi.org/10.1016/j.molcel.2022.02.007
  24. Ginhoux, F., Schultze, J.L., Murray, P.J., Ochando, J., and Biswas, S.K. (2016). New insights into the multidimensional concept of macrophage ontogeny, activation and function. Nat. Immunol. 17, 34-40. https://doi.org/10.1038/ni.3324
  25. Goossens, P., Rodriguez-Vita, J., Etzerodt, A., Masse, M., Rastoin, O., Gouirand, V., Ulas, T., Papantonopoulou, O., Van Eck, M., Auphan-Anezin, N., et al. (2019). Membrane cholesterol efflux drives tumor-associated macrophage reprogramming and tumor progression. Cell Metab. 29, 1376-1389.e4. https://doi.org/10.1016/j.cmet.2019.02.016
  26. Gunderstofte, C., Iversen, M.B., Peri, S., Thielke, A., Balachandran, S., Holm, C.K., and Olagnier, D. (2019). Nrf2 negatively regulates type I interferon responses and increases susceptibility to herpes genital infection in mice. Front. Immunol. 10, 2101.
  27. Harvey, C.J., Thimmulappa, R.K., Sethi, S., Kong, X., Yarmus, L., Brown, R.H., Feller-Kopman, D., Wise, R., and Biswal, S. (2011). Targeting Nrf2 signaling improves bacterial clearance by alveolar macrophages in patients with COPD and in a mouse model. Sci. Transl. Med. 3, 78ra32.
  28. Hayashi, M., Kuga, A., Suzuki, M., Panda, H., Kitamura, H., Motohashi, H., and Yamamoto, M. (2020). Microenvironmental activation of Nrf2 restricts the progression of Nrf2-activated malignant tumors. Cancer Res. 80, 3331-3344. https://doi.org/10.1158/0008-5472.CAN-19-2888
  29. Hayes, J.D. and Dinkova-Kostova, A.T. (2014). The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem. Sci. 39, 199-218. https://doi.org/10.1016/j.tibs.2014.02.002
  30. Hayes, J.D., Dinkova-Kostova, A.T., and Tew, K.D. (2020). Oxidative stress in cancer. Cancer Cell 38, 167-197. https://doi.org/10.1016/j.ccell.2020.06.001
  31. Hoetzenecker, W., Echtenacher, B., Guenova, E., Hoetzenecker, K., Woelbing, F., Bruck, J., Teske, A., Valtcheva, N., Fuchs, K., Kneilling, M., et al. (2012). ROS-induced ATF3 causes susceptibility to secondary infections during sepsis-associated immunosuppression. Nat. Med. 18, 128-134. https://doi.org/10.1038/nm.2557
  32. Ishii, T., Itoh, K., Takahashi, S., Sato, H., Yanagawa, T., Katoh, Y., Bannai, S., and Yamamoto, M. (2000). Transcription factor Nrf2 coordinately regulates a group of oxidative stress-inducible genes in macrophages. J. Biol. Chem. 275, 16023-16029. https://doi.org/10.1074/jbc.275.21.16023
  33. Itoh, K., Chiba, T., Takahashi, S., Ishii, T., Igarashi, K., Katoh, Y., Oyake, T., Hayashi, N., Satoh, K., Hatayama, I., et al. (1997). An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem. Biophys. Res. Commun. 236, 313-322. https://doi.org/10.1006/bbrc.1997.6943
  34. Itoh, K., Mochizuki, M., Ishii, Y., Ishii, T., Shibata, T., Kawamoto, Y., Kelly, V., Sekizawa, K., Uchida, K., and Yamamoto, M. (2004). Transcription factor Nrf2 regulates inflammation by mediating the effect of 15-deoxy-Delta(12,14)-prostaglandin j(2). Mol. Cell. Biol. 24, 36-45. https://doi.org/10.1128/MCB.24.1.36-45.2004
  35. Jamal Uddin, M., Joe, Y., Kim, S.K., Oh Jeong, S., Ryter, S.W., Pae, H.O., and Chung, H.T. (2016). IRG1 induced by heme oxygenase-1/carbon monoxide inhibits LPS-mediated sepsis and pro-inflammatory cytokine production. Cell. Mol. Immunol. 13, 170-179. https://doi.org/10.1038/cmi.2015.02
  36. Joshi, K., Mazumder, B., Chattopadhyay, P., Goyary, D., Das, M., and Dwivedi, S.K. (2021). Exploring the frostbite healing potential of hyaluronic acid based hydrogel of Manuka honey through in-silico antithrombotic and anti-platelet studies of major phytoconstituents and in-vivo evaluation in Wistar rat model. Drug Dev. Ind. Pharm. 47, 1326-1334. https://doi.org/10.1080/03639045.2021.1989459
  37. Kang, C., Song, C.H., Kim, N., Nam, R.H., Choi, S.I., Yu, J.E., Nho, H., Choi, J.A., Kim, J.W., Na, H.Y., et al. (2021). The enhanced inhibitory effect of estrogen on PD-L1 expression following Nrf2 deficiency in the AOM/DSS model of colitis-associated cancer. Front. Oncol. 11, 679324.
  38. Karamali, N., Ebrahimnezhad, S., Khaleghi Moghadam, R., Daneshfar, N., and Rezaiemanesh, A. (2022). HRD1 in human malignant neoplasms: Molecular mechanisms and novel therapeutic strategy for cancer. Life Sci. 301, 120620.
  39. Kim, W., Lee, H.N., Jang, J.H., Kim, S.H., Lee, Y.H., Hahn, Y.I., Ngo, H.K., Choi, Y., Joe, Y., Chung, H.T., et al. (2017). 15-Deoxy-Delta(12,14)-prostaglandin J2 exerts proresolving effects through nuclear factor E2-related factor 2-induced expression of CD36 and heme oxygenase-1. Antioxid. Redox Signal. 27, 1412-1431.
  40. Kobayashi, E.H., Suzuki, T., Funayama, R., Nagashima, T., Hayashi, M., Sekine, H., Tanaka, N., Moriguchi, T., Motohashi, H., Nakayama, K., et al. (2016). Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription. Nat. Commun. 7, 11624.
  41. Komatsu, M., Kurokawa, H., Waguri, S., Taguchi, K., Kobayashi, A., Ichimura, Y., Sou, Y.S., Ueno, I., Sakamoto, A., Tong, K.I., et al. (2010). The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat. Cell Biol. 12, 213-223. https://doi.org/10.1038/ncb2021
  42. Komohara, Y., Ohnishi, K., Kuratsu, J., and Takeya, M. (2008). Possible involvement of the M2 anti-inflammatory macrophage phenotype in growth of human gliomas. J. Pathol. 216, 15-24. https://doi.org/10.1002/path.2370
  43. Kong, X., Thimmulappa, R., Craciun, F., Harvey, C., Singh, A., Kombairaju, P., Reddy, S.P., Remick, D., and Biswal, S. (2011). Enhancing Nrf2 pathway by disruption of Keap1 in myeloid leukocytes protects against sepsis. Am. J. Respir. Crit. Care Med. 184, 928-938. https://doi.org/10.1164/rccm.201102-0271OC
  44. Kong, X., Thimmulappa, R., Kombairaju, P., and Biswal, S. (2010). NADPH oxidase-dependent reactive oxygen species mediate amplified TLR4 signaling and sepsis-induced mortality in Nrf2-deficient mice. J. Immunol. 185, 569-577. https://doi.org/10.4049/jimmunol.0902315
  45. Krneta, T., Gillgrass, A., Poznanski, S., Chew, M., Lee, A.J., Kolb, M., and Ashkar, A.A. (2017). M2-polarized and tumor-associated macrophages alter NK cell phenotype and function in a contact-dependent manner. J. Leukoc. Biol. 101, 285-295. https://doi.org/10.1189/jlb.3A1215-552R
  46. Levonen, A.L., Landar, A., Ramachandran, A., Ceaser, E.K., Dickinson, D.A., Zanoni, G., Morrow, J.D., and Darley-Usmar, V.M. (2004). Cellular mechanisms of redox cell signalling: role of cysteine modification in controlling antioxidant defences in response to electrophilic lipid oxidation products. Biochem. J. 378, 373-382. https://doi.org/10.1042/bj20031049
  47. Li, H., Yuan, Y., Chen, H., Dai, H., and Li, J. (2022). Indoleamine 2,3-dioxygenase mediates the therapeutic effects of adipose-derived stromal/stem cells in experimental periodontitis by modulating macrophages through the kynurenine-AhR-NRF2 pathway. Mol. Metab. 66, 101617.
  48. Liao, S.T., Han, C., Xu, D.Q., Fu, X.W., Wang, J.S., and Kong, L.Y. (2019). 4-Octyl itaconate inhibits aerobic glycolysis by targeting GAPDH to exert anti-inflammatory effects. Nat. Commun. 10, 5091.
  49. Liby, K.T. and Sporn, M.B. (2012). Synthetic oleanane triterpenoids: multifunctional drugs with a broad range of applications for prevention and treatment of chronic disease. Pharmacol. Rev. 64, 972-1003. https://doi.org/10.1124/pr.111.004846
  50. Liu, H., Dinkova-Kostova, A.T., and Talalay, P. (2008). Coordinate regulation of enzyme markers for inflammation and for protection against oxidants and electrophiles. Proc. Natl. Acad. Sci. U. S. A. 105, 15926-15931. https://doi.org/10.1073/pnas.0808346105
  51. Liu, H., Zhao, D., Li, H., Zhang, W., Lin, Q., Wang, X., Zheng, S., Zhang, L., Li, L., Hu, S., et al. (2022). Blocking iASPP/Nrf2/M-CSF axis improves anticancer effect of chemotherapy-induced senescence by attenuating M2 polarization. Cell Death Dis. 13, 166.
  52. Liu, H., Zimmerman, A.W., Singh, K., Connors, S.L., Diggins, E., Stephenson, K.K., Dinkova-Kostova, A.T., and Fahey, J.W. (2020). Biomarker exploration in human peripheral blood mononuclear cells for monitoring sulforaphane treatment responses in autism spectrum disorder. Sci. Rep. 10, 5822.
  53. Maj, T., Wang, W., Crespo, J., Zhang, H., Wang, W., Wei, S., Zhao, L., Vatan, L., Shao, I., Szeliga, W., et al. (2017). Oxidative stress controls regulatory T cell apoptosis and suppressor activity and PD-L1-blockade resistance in tumor. Nat. Immunol. 18, 1332-1341. https://doi.org/10.1038/ni.3868
  54. Maruyama, A., Tsukamoto, S., Nishikawa, K., Yoshida, A., Harada, N., Motojima, K., Ishii, T., Nakane, A., Yamamoto, M., and Itoh, K. (2008). Nrf2 regulates the alternative first exons of CD36 in macrophages through specific antioxidant response elements. Arch. Biochem. Biophys. 477, 139-145. https://doi.org/10.1016/j.abb.2008.06.004
  55. McMahon, M., Lamont, D.J., Beattie, K.A., and Hayes, J.D. (2010). Keap1 perceives stress via three sensors for the endogenous signaling molecules nitric oxide, zinc, and alkenals. Proc. Natl. Acad. Sci. U. S. A. 107, 18838-18843. https://doi.org/10.1073/pnas.1007387107
  56. McMahon, M., Thomas, N., Itoh, K., Yamamoto, M., and Hayes, J.D. (2006). Dimerization of substrate adaptors can facilitate cullin-mediated ubiquitylation of proteins by a "tethering" mechanism: a two-site interaction model for the Nrf2-Keap1 complex. J. Biol. Chem. 281, 24756-24768. https://doi.org/10.1074/jbc.M601119200
  57. Michelucci, A., Cordes, T., Ghelfi, J., Pailot, A., Reiling, N., Goldmann, O., Binz, T., Wegner, A., Tallam, A., Rausell, A., et al. (2013). Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production. Proc. Natl. Acad. Sci. U. S. A. 110, 7820-7825. https://doi.org/10.1073/pnas.1218599110
  58. Mills, C.D. (2012). M1 and M2 macrophages: oracles of health and disease. Crit. Rev. Immunol. 32, 463-488. https://doi.org/10.1615/CritRevImmunol.v32.i6.10
  59. Mills, E.L., Ryan, D.G., Prag, H.A., Dikovskaya, D., Menon, D., Zaslona, Z., Jedrychowski, M.P., Costa, A.S.H., Higgins, M., Hams, E., et al. (2018). Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature 556, 113-117. https://doi.org/10.1038/nature25986
  60. Moi, P., Chan, K., Asunis, I., Cao, A., and Kan, Y.W. (1994). Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the β-globin locus control region. Proc. Natl. Acad. Sci. U. S. A. 91, 9926-9930. https://doi.org/10.1073/pnas.91.21.9926
  61. Mosser, D.M. and Edwards, J.P. (2008). Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8, 958-969. https://doi.org/10.1038/nri2448
  62. Muller, S., Kohanbash, G., Liu, S.J., Alvarado, B., Carrera, D., Bhaduri, A., Watchmaker, P.B., Yagnik, G., Di Lullo, E., Malatesta, M., et al. (2017). Single-cell profiling of human gliomas reveals macrophage ontogeny as a basis for regional differences in macrophage activation in the tumor microenvironment. Genome Biol. 18, 234.
  63. Okabe, Y. and Medzhitov, R. (2016). Tissue biology perspective on macrophages. Nat. Immunol. 17, 9-17. https://doi.org/10.1038/ni.3320
  64. Olagnier, D., Brandtoft, A.M., Gunderstofte, C., Villadsen, N.L., Krapp, C., Thielke, A.L., Laustsen, A., Peri, S., Hansen, A.L., Bonefeld, L., et al. (2018). Nrf2 negatively regulates STING indicating a link between antiviral sensing and metabolic reprogramming. Nat. Commun. 9, 3506.
  65. Olagnier, D., Farahani, E., Thyrsted, J., Blay-Cadanet, J., Herengt, A., Idorn, M., Hait, A., Hernaez, B., Knudsen, A., Iversen, M.B., et al. (2020). SARS-CoV2-mediated suppression of NRF2-signaling reveals potent antiviral and anti-inflammatory activity of 4-octyl-itaconate and dimethyl fumarate. Nat. Commun. 11, 4938.
  66. Olagnier, D., Lababidi, R.R., Hadj, S.B., Sze, A., Liu, Y., Naidu, S.D., Ferrari, M., Jiang, Y., Chiang, C., Beljanski, V., et al. (2017). Activation of Nrf2 signaling augments vesicular stomatitis virus oncolysis via autophagy-driven suppression of antiviral immunity. Mol. Ther. 25, 1900-1916. https://doi.org/10.1016/j.ymthe.2017.04.022
  67. Onodera, Y., Teramura, T., Takehara, T., and Fukuda, K. (2015). Hyaluronic acid regulates a key redox control factor Nrf2 via phosphorylation of Akt in bovine articular chondrocytes. FEBS Open Bio 5, 476-484. https://doi.org/10.1016/j.fob.2015.05.007
  68. Ostrand-Rosenberg, S., Beury, D.W., Parker, K.H., and Horn, L.A. (2020). Survival of the fittest: how myeloid-derived suppressor cells survive in the inhospitable tumor microenvironment. Cancer Immunol. Immunother. 69, 215-221. https://doi.org/10.1007/s00262-019-02388-8
  69. Pae, H.O., Oh, G.S., Lee, B.S., Rim, J.S., Kim, Y.M., and Chung, H.T. (2006). 3-Hydroxyanthranilic acid, one of L-tryptophan metabolites, inhibits monocyte chemoattractant protein-1 secretion and vascular cell adhesion molecule-1 expression via heme oxygenase-1 induction in human umbilical vein endothelial cells. Atherosclerosis 187, 274-284. https://doi.org/10.1016/j.atherosclerosis.2005.09.010
  70. Pan, J., Zhao, X., Lin, C., Xu, H., Yin, Z., Liu, T., and Zhang, S. (2014). Immune responsive gene 1, a novel oncogene, increases the growth and tumorigenicity of glioma. Oncol. Rep. 32, 1957-1966. https://doi.org/10.3892/or.2014.3474
  71. Peace, C.G. and O'Neill, L.A. (2022). The role of itaconate in host defense and inflammation. J. Clin. Invest. 132, e148548.
  72. Poznanski, S.M., Singh, K., Ritchie, T.M., Aguiar, J.A., Fan, I.Y., Portillo, A.L., Rojas, E.A., Vahedi, F., El-Sayes, A., Xing, S., et al. (2021). Metabolic flexibility determines human NK cell functional fate in the tumor microenvironment. Cell Metab. 33, 1205-1220.e5. https://doi.org/10.1016/j.cmet.2021.03.023
  73. Prendergast, G.C., Smith, C., Thomas, S., Mandik-Nayak, L., Laury-Kleintop, L., Metz, R., and Muller, A.J. (2014). Indoleamine 2,3-dioxygenase pathways of pathogenic inflammation and immune escape in cancer. Cancer Immunol. Immunother. 63, 721-735. https://doi.org/10.1007/s00262-014-1549-4
  74. Prestera, T., Talalay, P., Alam, J., Ahn, Y.I., Lee, P.J., and Choi, A.M. (1995). Parallel induction of heme oxygenase-1 and chemoprotective phase 2 enzymes by electrophiles and antioxidants: regulation by upstream antioxidant-responsive elements (ARE). Mol. Med. 1, 827-837. https://doi.org/10.1007/BF03401897
  75. Procaccini, C., Garavelli, S., Carbone, F., Di Silvestre, D., La Rocca, C., Greco, D., Colamatteo, A., Lepore, M.T., Russo, C., De Rosa, G., et al. (2021). Signals of pseudo-starvation unveil the amino acid transporter SLC7A11 as key determinant in the control of Treg cell proliferative potential. Immunity 54, 1543-1560.e6. https://doi.org/10.1016/j.immuni.2021.04.014
  76. Quail, D.F. and Joyce, J.A. (2017). The microenvironmental landscape of brain tumors. Cancer Cell 31, 326-341. https://doi.org/10.1016/j.ccell.2017.02.009
  77. Rada, P., Rojo, A.I., Chowdhry, S., McMahon, M., Hayes, J.D., and Cuadrado, A. (2011). SCF/β-TrCP promotes glycogen synthase kinase 3-dependent degradation of the Nrf2 transcription factor in a Keap1-independent manner. Mol. Cell. Biol. 31, 1121-1133. https://doi.org/10.1128/MCB.01204-10
  78. Robertson, H., Hayes, J.D., and Sutherland, C. (2018). A partnership with the proteasome; the destructive nature of GSK3. Biochem. Pharmacol. 147, 77-92. https://doi.org/10.1016/j.bcp.2017.10.016
  79. Rojo de la Vega, M., Chapman, E., and Zhang, D.D. (2018). NRF2 and the hallmarks of cancer. Cancer Cell 34, 21-43. https://doi.org/10.1016/j.ccell.2018.03.022
  80. Ryan, D.G., Knatko, E.V., Casey, A.M., Hukelmann, J.L., Dayalan Naidu, S., Brenes, A.J., Ekkunagul, T., Baker, C., Higgins, M., Tronci, L., et al. (2022). Nrf2 activation reprograms macrophage intermediary metabolism and suppresses the type I interferon response. iScience 25, 103827.
  81. Ryoo, I.G., Choi, B.H., Ku, S.K., and Kwak, M.K. (2018). High CD44 expression mediates p62-associated NFE2L2/NRF2 activation in breast cancer stem cell-like cells: implications for cancer stem cell resistance. Redox Biol. 17, 246-258. https://doi.org/10.1016/j.redox.2018.04.015
  82. Saddawi-Konefka, R., Seelige, R., Gross, E.T., Levy, E., Searles, S.C., Washington, A., Jr., Santosa, E.K., Liu, B., O'Sullivan, T.E., Harismendy, O., et al. (2016). Nrf2 induces IL-17D to mediate tumor and virus surveillance. Cell Rep. 16, 2348-2358. https://doi.org/10.1016/j.celrep.2016.07.075
  83. Sanderson, L.E., Chien, A.T., Astin, J.W., Crosier, K.E., Crosier, P.S., and Hall, C.J. (2015). An inducible transgene reports activation of macrophages in live zebrafish larvae. Dev. Comp. Immunol. 53, 63-69. https://doi.org/10.1016/j.dci.2015.06.013
  84. Satoh, H., Moriguchi, T., Saigusa, D., Baird, L., Yu, L., Rokutan, H., Igarashi, K., Ebina, M., Shibata, T., and Yamamoto, M. (2016). NRF2 intensifies host defense systems to prevent lung carcinogenesis, but after tumor initiation accelerates malignant cell growth. Cancer Res. 76, 3088-3096. https://doi.org/10.1158/0008-5472.CAN-15-1584
  85. Satoh, H., Moriguchi, T., Taguchi, K., Takai, J., Maher, J.M., Suzuki, T., Winnard, P.T., Jr., Raman, V., Ebina, M., Nukiwa, T., et al. (2010). Nrf2-deficiency creates a responsive microenvironment for metastasis to the lung. Carcinogenesis 31, 1833-1843. https://doi.org/10.1093/carcin/bgq105
  86. Sayin, V.I., LeBoeuf, S.E., Singh, S.X., Davidson, S.M., Biancur, D., Guzelhan, B.S., Alvarez, S.W., Wu, W.L., Karakousi, T.R., Zavitsanou, A.M., et al. (2017). Activation of the NRF2 antioxidant program generates an imbalance in central carbon metabolism in cancer. Elife 6, e28083.
  87. Shen, X., Zhao, Y., Liu, G., Zhou, H.L., Fan, J., Zhang, L., Li, Y.L., Wang, Y., Liang, J., and Xu, Z.X. (2020). Upregulation of programmed death ligand 1 by liver kinase B1 and its implication in programmed death 1 blockade therapy in non-small cell lung cancer. Life Sci. 256, 117923.
  88. Shi, H.Z., Wang, D., Sun, X.N., and Sheng, L. (2018). MicroRNA-378 acts as a prognosis marker and inhibits cell migration, invasion and epithelial-mesenchymal transition in human glioma by targeting IRG1. Eur. Rev. Med. Pharmacol. Sci. 22, 3837-3846.
  89. Sies, H., Belousov, V.V., Chandel, N.S., Davies, M.J., Jones, D.P., Mann, G.E., Murphy, M.P., Yamamoto, M., and Winterbourn, C. (2022). Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat. Rev. Mol. Cell Biol. 23, 499-515. https://doi.org/10.1038/s41580-022-00456-z
  90. Sies, H. and Jones, D.P. (2020). Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol. 21, 363-383. https://doi.org/10.1038/s41580-020-0230-3
  91. Singh, A., Daemen, A., Nickles, D., Jeon, S.M., Foreman, O., Sudini, K., Gnad, F., Lajoie, S., Gour, N., Mitzner, W., et al. (2021). NRF2 activation promotes aggressive lung cancer and associates with poor clinical outcomes. Clin. Cancer Res. 27, 877-888. https://doi.org/10.1158/1078-0432.CCR-20-1985
  92. Soucy, T.A., Smith, P.G., Milhollen, M.A., Berger, A.J., Gavin, J.M., Adhikari, S., Brownell, J.E., Burke, K.E., Cardin, D.P., Critchley, S., et al. (2009). An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature 458, 732-736. https://doi.org/10.1038/nature07884
  93. Strelko, C.L., Lu, W., Dufort, F.J., Seyfried, T.N., Chiles, T.C., Rabinowitz, J.D., and Roberts, M.F. (2011). Itaconic acid is a mammalian metabolite induced during macrophage activation. J. Am. Chem. Soc. 133, 16386-16389. https://doi.org/10.1021/ja2070889
  94. Sun, K.A., Li, Y., Meliton, A.Y., Woods, P.S., Kimmig, L.M., Cetin-Atalay, R., Hamanaka, R.B., and Mutlu, G.M. (2020). Endogenous itaconate is not required for particulate matter-induced NRF2 expression or inflammatory response. Elife 9, e54877.
  95. Tauffenberger, A., Fiumelli, H., Almustafa, S., and Magistretti, P.J. (2019). Lactate and pyruvate promote oxidative stress resistance through hormetic ROS signaling. Cell Death Dis. 10, 653.
  96. Thimmulappa, R.K., Fuchs, R.J., Malhotra, D., Scollick, C., Traore, K., Bream, J.H., Trush, M.A., Liby, K.T., Sporn, M.B., Kensler, T.W., et al. (2007). Preclinical evaluation of targeting the Nrf2 pathway by triterpenoids (CDDO-Im and CDDO-Me) for protection from LPS-induced inflammatory response and reactive oxygen species in human peripheral blood mononuclear cells and neutrophils. Antioxid. Redox Signal. 9, 1963-1970. https://doi.org/10.1089/ars.2007.1745
  97. Thimmulappa, R.K., Lee, H., Rangasamy, T., Reddy, S.P., Yamamoto, M., Kensler, T.W., and Biswal, S. (2006). Nrf2 is a critical regulator of the innate immune response and survival during experimental sepsis. J. Clin. Invest. 116, 984-995. https://doi.org/10.1172/JCI25790
  98. Thomas, D.M., Francescutti-Verbeem, D.M., and Kuhn, D.M. (2006). Gene expression profile of activated microglia under conditions associated with dopamine neuronal damage. FASEB J. 20, 515-517. https://doi.org/10.1096/fj.05-4873fje
  99. Tong, K.I., Padmanabhan, B., Kobayashi, A., Shang, C., Hirotsu, Y., Yokoyama, S., and Yamamoto, M. (2007). Different electrostatic potentials define ETGE and DLG motifs as hinge and latch in oxidative stress response. Mol. Cell. Biol. 27, 7511-7521. https://doi.org/10.1128/MCB.00753-07
  100. Toole, B.P. (2004). Hyaluronan: from extracellular glue to pericellular cue. Nat. Rev. Cancer 4, 528-539. https://doi.org/10.1038/nrc1391
  101. Torrente, L. and DeNicola, G.M. (2022). Targeting NRF2 and its downstream processes: opportunities and challenges. Annu. Rev. Pharmacol. Toxicol. 62, 279-300. https://doi.org/10.1146/annurev-pharmtox-052220-104025
  102. van der Horst, D., Carter-Timofte, M.E., van Grevenynghe, J., Laguette, N., Dinkova-Kostova, A.T., and Olagnier, D. (2022). Regulation of innate immunity by Nrf2. Curr. Opin. Immunol. 78, 102247.
  103. Weiss, J.M., Davies, L.C., Karwan, M., Ileva, L., Ozaki, M.K., Cheng, R.Y., Ridnour, L.A., Annunziata, C.M., Wink, D.A., and McVicar, D.W. (2018). Itaconic acid mediates crosstalk between macrophage metabolism and peritoneal tumors. J. Clin. Invest. 128, 3794-3805. https://doi.org/10.1172/JCI99169
  104. Wu, T., Zhao, F., Gao, B., Tan, C., Yagishita, N., Nakajima, T., Wong, P.K., Chapman, E., Fang, D., and Zhang, D.D. (2014). Hrd1 suppresses Nrf2-mediated cellular protection during liver cirrhosis. Genes Dev. 28, 708-722. https://doi.org/10.1101/gad.238246.114
  105. Wurdinger, T., Deumelandt, K., van der Vliet, H.J., Wesseling, P., and de Gruijl, T.D. (2014). Mechanisms of intimate and long-distance cross-talk between glioma and myeloid cells: how to break a vicious cycle. Biochim. Biophys. Acta 1846, 560-575. https://doi.org/10.1016/j.bbcan.2014.10.003
  106. Yamamoto, M., Kensler, T.W., and Motohashi, H. (2018). The KEAP1-NRF2 system: a thiol-based sensor-effector apparatus for maintaining redox homeostasis. Physiol. Rev. 98, 1169-1203. https://doi.org/10.1152/physrev.00023.2017
  107. Zhang, D., Rennhack, J., Andrechek, E.R., Rockwell, C.E., and Liby, K.T. (2018). Identification of an unfavorable immune signature in advanced lung tumors from Nrf2-deficient mice. Antioxid. Redox Signal. 29, 1535-1552. https://doi.org/10.1089/ars.2017.7201
  108. Zhang, D.D. and Hannink, M. (2003). Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress. Mol. Cell. Biol. 23, 8137-8151. https://doi.org/10.1128/MCB.23.22.8137-8151.2003
  109. Zhao, H., Teng, D., Yang, L., Xu, X., Chen, J., Jiang, T., Feng, A.Y., Zhang, Y., Frederick, D.T., Gu, L., et al. (2022). Myeloid-derived itaconate suppresses cytotoxic CD8(+) T cells and promotes tumour growth. Nat. Metab. 2022 Nov 1 [Epub]. https://doi.org/10.1038/s42255-022-00676-9
  110. Zhu, B., Tang, L., Chen, S., Yin, C., Peng, S., Li, X., Liu, T., Liu, W., Han, C., Stawski, L., et al. (2018). Targeting the upstream transcriptional activator of PD-L1 as an alternative strategy in melanoma therapy. Oncogene 37, 4941-4954. https://doi.org/10.1038/s41388-018-0314-0