DOI QR코드

DOI QR Code

Duty ratio control technique with torque ripple minimization for induction motor-based electric vehicle applications

  • Sudhir Sharma (Department of Electrical Engineering, Samrat Ashok Technological Institute) ;
  • Bhoopendra Singh (Department of Electrical Engineering, University Institute of Technology, RGPV) ;
  • Ashutosh Datar (Department of Electronic Engineering, Samrat Ashok Technological Institute)
  • Received : 2022.09.22
  • Accepted : 2023.01.11
  • Published : 2023.04.20

Abstract

DTC drives are utilized in modern electrical vehicles. This paper proposed a blend of the conventional direct torque control (DTC) and a duty ratio control technique known as the modified duty ratio control for torque ripple reduction. In this modified technique, voltage vector selection is based on the conventional DTC technique, which utilizes six entire voltage vectors and two zero vectors. The torque error modifies the duty ratio of the voltage vector. In the presented technique, the magnitude of the torque error is the controlling variable for the modification of the duty ratio of the voltage vectors. Depending on the magnitude of the torque error, a duty ratio-modulating factor is generated from a lookup table, which is then multiplied by the duty ratio for any of the selected voltage vectors. Thus, improved performance in terms of low torque and current ripples is achieved from a DTC drive by a control strategy with less complexity, which preserves the simplicity of switching to table-based traditional DTC drives. Simulation and experimental results validate the proposed switching strategy.

Keywords

References

  1. Casadei, D., Profumo, F., Member, S., Serra, G.: FOC and DTC : two viable schemes for induction motors torque control. IEEE Trans. Power Electron. 17(5), 779-787 (2002) https://doi.org/10.1109/TPEL.2002.802183
  2. El Badi, B., Bouzidi, B., Masmoudi, A.: DTC scheme for a four-switch inverter-fed induction motor emulating the six-switch inverter operation. IEEE Trans. Power Electron. 28(7), 3528-3538 (2013) https://doi.org/10.1109/TPEL.2012.2225449
  3. Depenbrock, M.: Direct self-control (DSC) of inverter-fed induction machine. IEEE Trans. Power Electron. 3(4), 420-429 (1988) https://doi.org/10.1109/63.17963
  4. Sudheer H., Kodad, S. F., Sarvesh B.: Implementation of SVM-DTC of induction motor using FPGA. In: IEEE Int. Conf. Power, Control. Signals Instrum. Eng. ICPCSI 2017, pp. 2319-2323, (2018)
  5. Zhang, B., Ge, Q., Chang, Q., Zhang S.: Research on a sensorless SVM-DTC strategy for induction motors based on modified stator model. In: Proc. 2014 9th IEEE Conf. Ind. Electron. Appl. ICIEA 2014. pp. 1724-1729, (2014) doi: https://doi.org/10.1109/ICIEA.2014.6931446.
  6. Zhang, Z., Tang, R., Bai, B., Xie, D.: Novel direct torque control based on space vector modulation with adaptive stator flux observer for induction motors. IEEE Trans. Magn. 46(8), 3133-3136 (2010) https://doi.org/10.1109/TMAG.2010.2051142
  7. Suresh, S., Rajeevan, P.: Virtual space vector-based direct torque control schemes for induction motor drives. IEEE Trans. Ind. Appl. 56(3), 2719-2728 (2020) https://doi.org/10.1109/TIA.2020.2978447
  8. Hakami, S.S., Alsofyani, I.M., Lee, K.B.: Torque ripple reduction and flux-droop minimization of DTC with improved interleaving CSFTC of IM fed by three-level NPC inverter. IEEE Access 7, 184266-184275 (2019) https://doi.org/10.1109/ACCESS.2019.2960685
  9. Tandekar, J.K., Ojha, A., Das, S., Swarnkar, P., Jain, S.: SEIG-based renewable power generation and compensation in MVDC ship power system. Int. Trans. Electr. Energy Syst. 29(4), e2785 (2019)
  10. Malla, S.G., Mohana, J., Malla, R.: Direct torque control of induction motor with fuzzy controller : a review. Int. Conf. Electr. Electron. Optim. Tech. 10(7), 1-16 (2014)
  11. Kazmierkowski, M.P., Kasprowicz, A.B.: Improved direct torque and flux vector control of PWM inverter-fed induction motor drives. IEEE Trans. Ind. Electron. 42(4), 344-350 (1995) https://doi.org/10.1109/41.402472
  12. Zhang, Y., Zhu, J., Zhao, Z., Xu, W., Dorrell, D.G.: An improved direct torque control for three-level inverter-fed induction motor sensorless drive. IEEE Trans. Power Electron. 27(3), 1502-1513 (2012) https://doi.org/10.1109/TPEL.2010.2043543
  13. Zhang, Y., Yang, H.: Model-predictive flux control of induction motor drive with switching instant optimization. IEEE Trans. Energy Convers. 30(3), 1113-1122 (2015) https://doi.org/10.1109/TEC.2015.2423692
  14. Arif, A., Betka, A., Guettaf, A.: A minimization of torque ripple of sensorless DTC for controlled induction motor used in electric vehicles. Int. Rev. Electr. Eng. 4(5), 837-843 (2009)
  15. Tandekar, J.K., Ojha, A., Jain, S.: SEIG-Based Renewable Generation for MVDC Ship Power System with Improved Power Quality. Electr. Power Components Syst. 47(1-2), 27-42 (2019) https://doi.org/10.1080/15325008.2019.1570394
  16. Banda, G., Kolli, S.G.: Comparison of ANN- and GA-based DTC eCAR. J. Power Electron. 21, 1333-1342 (2021) https://doi.org/10.1007/s43236-021-00273-1
  17. Aygun, H., Aktas, M.: LMC-based DTC for efficiency improvement of IM drives and their electric vehicle applications. J. Power Electron. 20, 1232-1242 (2020) https://doi.org/10.1007/s43236-020-00116-5
  18. Tang, G., Kong, W., Zhang, T.: Optimized non-sinusoidal SVPWM method for high power multiphase induction motor drives. J. Power Electron. 20, 938-947 (2020) https://doi.org/10.1007/s43236-020-00084-w
  19. Sun, X., Li, T., Tian, X., Zhu, J.: Fault-tolerant operation of a six-phase permanent magnet synchronous hub motor based on model predictive current control with virtual voltage vectors. IEEE Trans. Energy Convers. 37(1), 337-346 (2022) https://doi.org/10.1109/TEC.2021.3109869
  20. Li, T., Sun, X., Lei, G., Yang, Z., Guo, Y., Zhu, J.: Finite-control-set model predictive control of permanent magnet synchronous motor drive systems-an overview. IEEE/CAA J. Autom. Sin. (2022). https://doi.org/10.1109/JAS.2022.105851
  21. Sun, X., Li, T., Zhu, Z., Lei, G., Guo, Y., Zhu, J.: Speed sensorless model predictive current control based on finite position set for PMSHM drives. IEEE Trans. Transp. Electrif. 7(4), 2743-2752 (2021) https://doi.org/10.1109/TTE.2021.3081436
  22. Sun, X., Li, T., Yao, M., Lei, G., Guo, Y., Zhu, J.: Improved finite-control-set model predictive control with virtual vectors for PMSHM drives. IEEE Trans. Energy Convers. 37(3), 1885-1894 (2021) https://doi.org/10.1109/TEC.2021.3138905