DOI QR코드

DOI QR Code

Efficient Global Optimization of Periodic Plasmonic Nanoslit Array Based on Quality Factor Analysis

  • Jaehoon Jung (Department of Electronics and Electrical Engineering, Dankook University)
  • Received : 2023.03.23
  • Accepted : 2023.05.17
  • Published : 2023.06.25

Abstract

An efficient global optimization approach for a periodic plasmonic nanoslit array based on extraordinary optical transmission within an acceptable time range is proposed using 𝚀 factor analysis method. The particle swarm optimization is employed as a global optimization tool. The figure of merit is defined as a product of transmission peak value and 𝚀 factor. The design variables are the slit width, height, and period of the slit array, respectively. The optical properties such as transmission spectrum and bandwidth are calculated rigorously using the finite element method.

Keywords

References

  1. J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, "Transmission resonance on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845-2848 (1999).  https://doi.org/10.1103/PhysRevLett.83.2845
  2. X. Jiao, P. Wang, L. Tang, Y. Lu, Q. Li, D. Zhang, P. Yao, H. Ming, and J. Xie, "Fabry-Perot-like phenomenon in the surface plasmons resonant transmission of metallic gratings with very narrow slits," Appl. Phys. B 80, 301-305 (2005). 
  3. W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, "Surface plasmon polaritons and their role in the enhances transmission of light through periodic arrays of subwavelength holes in a metal film," Phys. Rev. Lett. 92, 107401 (2004). 
  4. H. J. Lezec and T. Thio, "Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays," Opt. Express 12, 3629-3651 (2004).  https://doi.org/10.1364/OPEX.12.003629
  5. S. Wu, L. Zhou, Y.-M. Wang, G.-D. Wang, Q.-J. Wang, C.-P. Huang, and Y.-Y. Zhu, "Optical properties of a metal film perforated with coaxial elliptical hole arrays," Phys. Rev. E 81, 057601 (2010). 
  6. M. Camacho, A. Nekovic, S. Freer, P. Penchev, R. R. Boix, S. Dimov, and M. Navarro-Cia, "Symmetry and finite-size effects in quasi-optical extraordinarily THz transmitting arrays of tilted slots," IEEE Trans. Antennas Propag. 68, 6109-6117 (2020).  https://doi.org/10.1109/TAP.2020.2985770
  7. S. C. K. Goh, L. L. Shiau, L. Hu, N. Chen, Z. Ren, C. Lee, and C. S. Tan, "Corner-promoted focus enhancement of light in conical holes for extraordinary optical transmission," IEEE Sensors J. 21, 9081-9089 (2021).  https://doi.org/10.1109/JSEN.2021.3053273
  8. R. A. M. Lameirinhas, J. P. N. Torres, A. Baptista, and M. J. M. Martins, "A new method to analyse the role of surface plasmon polaritons on dielectric-metal interfaces," IEEE Photonics J. 14, 2236409 (2022). 
  9. X. Liu, Y. Liu, C. Fang, G. Han, and Y. Hao, "Investigation of enhanced transmission and beaming effect through an inSb subwavelength grating with a slit at the terahertz range," IEEE Photonics J. 12, 4800112 (2020). 
  10. J. Jung, "Plasmonic multiplexing extraordinary optical transmission sensor with enhanced sensitivity through grooves in metal film," IEEE Sensors J. 19, 6705-6710 (2019).  https://doi.org/10.1109/JSEN.2019.2914962
  11. K. Xu, M. Fang, and Z. Huang, "Compact vertical-cavity surface-emitting laser based on all-dielectric metasurfaces," Opt. Commun. 475, 126257 (2020). 
  12. R. A. M. Lameirinhas, J. P. N. Torres, A. Baptista, and M. J. M. Martins, "The impact of nanoantennas on ring resonators' performance," Opt. Commun. 490, 126906 (2021). 
  13. R. D. F. R. Gomes, M. J. Martins, A. Baptista, and J. P. N. Torres, "Study of a nano optical antenna for intersatellite communications," Opt. Quant. Electron. 49, 135 (2017). 
  14. K.-Y. Kim and J. Jung, "Multiobjective optimization for a plasmonic nanoslit array sensor using Kriging models," Appl. Opt. 56, 5838-5843 (2017).  https://doi.org/10.1364/AO.56.005838
  15. J. Jung, "Robust optimization of nanoslit array sensor based on extraordinary optical transmission," IEEE Sensors J. 18, 8720-8725 (2018).  https://doi.org/10.1109/JSEN.2018.2870300
  16. J. Jung, "A design approach for plasmonic filter using 𝚀 factor analysis," Opt. Eng. 62, 055101 (2023). 
  17. T. M. Shami, A. A. El-Saleh, M. Alswaitti, Q. Al-Tashi, M. A. Summakieh, and S. Mirjalil, "Particle swarm optimization: A comprehensive survey," IEEE Access 10, 10031-10061 (2022).  https://doi.org/10.1109/ACCESS.2022.3142859
  18. B. Su, Y. Lin, J. Wang, X. Quan, Z. Chang, and C. Ruic, "Sewage treatment system for improving energy efficiency based on particle swarm optimization algorithm," Energy Rep. 8, 8701-8708 (2022).  https://doi.org/10.1016/j.egyr.2022.06.053
  19. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, USA, 1985), Volume 1. 
  20. A. Hosseini, A. Nieuwoudt, and Y. Massoud, "Optimizing dielectric strips over a metallic substrate for subwavelength light confinement," IEEE Photon. Technol. Lett. 19, 522-524 (2007).  https://doi.org/10.1109/LPT.2007.893827
  21. J. Kennedy and R. Eberhart, "Particle swarm optimization," in Proc. International Conference on Neural Networks (Perth, WA, Australia, 1995), pp. 1942-1948.