DOI QR코드

DOI QR Code

285 mJ Electro-optically 𝚀-switched Er:YAG Master Oscillator Power Amplifier (MOPA) System with Adjustable Pumping Delay between Flashlamps at 2.94 ㎛

  • Heesuk Jang (Ground Technology Research Institute, Agency for Defense Development) ;
  • Hajun Song (Ground Technology Research Institute, Agency for Defense Development) ;
  • Hae Seog Koh (Ground Technology Research Institute, Agency for Defense Development) ;
  • Han Young Ryu (R&D center, Wontech Co. Ltd.)
  • Received : 2023.02.27
  • Accepted : 2023.05.25
  • Published : 2023.06.25

Abstract

In this paper, we demonstrated a high-energy (285 mJ) mid-infrared flashlamp-pumped electro-optically 𝚀-switched Er:YAG master oscillator power amplifier (MOPA) system and comprehensively investigated its temporal, spectral, and spatial characteristics. To increase the output energy, we optimized the delay between the timings at which the flashlamps of the master oscillator and power amplifier were triggered. In addition, the output energy was improved while minimizing thermal effects by cooling the MOPA system to a temperature slightly above the dew point. Consequently, the MOPA structure boosted the output energy without damaging the lithium niobate Pockels cell, which is a crucial element in 𝚀-switching. This design realized pulses with energies up to 0.285 J and pulse durations of approximately 140 ns at a wavelength of 2,936.7 nm. This high-energy mid-IR Er:YAG MOPA system can be used for various scientific, engineering, and military underwater applications.

Keywords

Acknowledgement

This work was supported by the Agency for Defense Development by the Republic of Korea Government.

References

  1. D. Jung, S. Bank, M. L. Lee, and D. Wasserman, "Next-generation mid-infrared sources," J. Opt. 19, 123001 (2017). 
  2. B. M. Walsh, H. R. Lee, and N. P. Barnes, "Mid infrared lasers for remote sensing applications," J. Lumin. 169, 400-405 (2016).  https://doi.org/10.1016/j.jlumin.2015.03.004
  3. I. T. Sorokina and K. L. Vodopyanov, Solid-state Mid-Infrared Laser Sources (Springer, Berlin, Germany, 2003). 
  4. I. G. Kim, C. Lee, H. S. Kim, S. C. Lim, and J. S. Ahn, "Classification of midinfrared spectra of colon cancer tissue using a convolutional neural network," Curr. Opt. Photonics 6, 92-103 (2022). 
  5. R. K. Shori, A. A. Walston, O. M. Stafsudd, D. Fried, and J. T. Walsh, "Quantification and modeling of the dynamic changes in the absorption coefficient of water at λ=2.94 ㎛," IEEE J. Sel. Top. Quantum Electron. 7, 959-970 (2001).  https://doi.org/10.1109/2944.983300
  6. M. Matsumoto, Y. Yoshimine, and A. Akamine, "Visualization of irrigant flow and cavitation induced by Er:YAG laser within a root canal model," J. Endod. 37, 839-843 (2011).  https://doi.org/10.1016/j.joen.2011.02.035
  7. I. Apitz and A. Vogel, "Material ejection in nanosecond Er:YAG laser ablation of water, liver, and skin," Appl. Phys. A 81, 329-338 (2005).  https://doi.org/10.1007/s00339-005-3213-5
  8. V. Fedorov, D. Martyshkin, K. Karki, and S. Mirov, "Q-switched and gain-switched Fe:ZnSe lasers tunable over 3.60-5.15 ㎛," Opt. Express 27, 13934-13941 (2019).  https://doi.org/10.1364/OE.27.013934
  9. K. L. Vodopyanov, L. A. Kulevsky, V. G. Mikhalevich, and A. M. Rodin, "Laser-induced generation of subnanosecond sound pulses in liquids," Sov. Phys. JETP 64, 67-70 (1986). 
  10. M. S. Islam, M. Younis, M. Mahmud, G. Carter, and F. S. Choa, "A peak detection based OOK photoacoustic modulation scheme for air to underwater communication," Opt. Commun. 529, 129078 (2023). 
  11. A. Godard, "Infrared (2-12 ㎛) solid-state laser sources: a review," C. R. Phys. 8, 1100-1128 (2007).  https://doi.org/10.1016/j.crhy.2007.09.010
  12. K. S. Bagdasarov, V. I. Zhekov, L. A. Kulevskiĩ, V. A. Lobachev, T. M. Murina, and A. M. Prokhorov, "Giant laser radiation pulses from erbium-doped yttrium aluminum garnet crystals," Sov. J. Quantum Electron. 10, 1127-1131 (1980).  https://doi.org/10.1070/QE1980v010n09ABEH010665
  13. S. Georgescu and O. Toma, "Er:YAG three-micron laser: Performances and limits," IEEE J. Sel. Top. Quantum Electron. 11, 682-689 (2005).  https://doi.org/10.1109/JSTQE.2005.850593
  14. J. P. Salvestrini, M. Abarkan, and M. D. Fontana, "Comparative study of nonlinear optical crystals for electro-optical Q-switching of laser resonators," Opt. Mater. 26, 449-458 (2004).  https://doi.org/10.1016/j.optmat.2003.10.009
  15. H. Jeong and D.-I. Yeom, "Passively Q-switched Erbium doped all-fiber laser with high pulse energy based on evanescent field interaction with single-walled carbon nanotube saturable absorber," Curr. Opt. Photonics 1, 203-206 (2017). 
  16. N. M. Wannop, M. R. Dickinson, A. Charlton, and T. A. King, "Q-switching the erbium-YAG laser," J. Mod. Opt. 41, 2043-2053 (1994).  https://doi.org/10.1080/09500349414551921
  17. H. J. Eichler, B. Liu, M. Kayser, and S. I. Khomenko, "Er:YAG-laser at 2.94 ㎛ Q-switched by a FTIR-shutter with silicon output coupler and polarizer," Opt. Mater. 5, 259-265 (1996).  https://doi.org/10.1016/0925-3467(96)00006-7
  18. M. Skorczakowski, P. Nyga, A. Zajac, and W. Zendzian, "2.94 ㎛ Er:YAG laser Q-switched with RTP Pockels cell," in Proc. European Conference on Lasers and Electro-Optics-CLEO/Europe 2003 (Munich, Germany, Jun. 22-27, 2003), p. 69. 
  19. A. Zajac, M. Skorczakowski, J. Swiderski, and P. Nyga, "Electrooptically Q-switched mid-infrared Er:YAG laser for medical applications," Opt. Express 12, 5125-5130 (2004).  https://doi.org/10.1364/OPEX.12.005125
  20. H. Jelinkova, J. Sulc, P. Koranda, M. Nemec, M. Cech, M. Jelinek, and V. Skoda, "LiNbO3 Pockels cell for Q-switch of Er:YAG laser," Laser Phys. Lett. 1, 59 (2004). 
  21. J. Yang, L. Wang, X. Wu, T. Cheng, and H. Jiang, "High peak power Q-switched Er:YAG laser with two polarizers and its ablation performance for hard dental tissues," Opt. Express 22, 15686-15696 (2014).  https://doi.org/10.1364/OE.22.015686
  22. F. E. Livingston, S. M. George, and R. K. Shori, "Optimization of a rotary Q-switched Er:YAG laser," Rev. Sci. Instrum. 73, 2526-2532 (2002).  https://doi.org/10.1063/1.1488149
  23. M. Skorczakowski., J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprazak, S. Gross, A. Heinrich, and T. Bragagna, "Mid-infrared Q-switched Er:YAG laser for medical applications," Laser Phys. Lett. 7, 498-504 (2010).  https://doi.org/10.1002/lapl.201010019
  24. K. Karki, V. Fedorov, D. Martyshkin, and S. Mirov, "High energy (0.8 J) mechanically Q-switched 2.94 ㎛ Er:YAG laser," Opt. Express 29, 4287-4295 (2021).  https://doi.org/10.1364/OE.417301
  25. J. Badziak and A. Dubicki, "Generation of short high-power pulses in excimer lasers by fast pulse Q-switching," Opt. Quantum Electron. 24, 1381-1399 (1992).  https://doi.org/10.1007/BF00625814
  26. P. Nyga, A. Zajac, M. Skorczakowski, P. Konieczny, and J. Swiderski, "Selection of electro-optic materials for Pockels cells used in Q-switched Er:YAG lasers," Proc. SPIE 5484, 336-339 (2004). 
  27. N. M. Wannop, M. R. Dickinson, and T. A. King, "An erbium:YAG oscillator-amplifier laser system," Opt. Commun. 113, 453-457 (1995). https://doi.org/10.1016/0030-4018(94)00534-2