Acknowledgement
This work was supported by the Agency for Defense Development by the Republic of Korea Government.
References
- D. Jung, S. Bank, M. L. Lee, and D. Wasserman, "Next-generation mid-infrared sources," J. Opt. 19, 123001 (2017).
- B. M. Walsh, H. R. Lee, and N. P. Barnes, "Mid infrared lasers for remote sensing applications," J. Lumin. 169, 400-405 (2016). https://doi.org/10.1016/j.jlumin.2015.03.004
- I. T. Sorokina and K. L. Vodopyanov, Solid-state Mid-Infrared Laser Sources (Springer, Berlin, Germany, 2003).
- I. G. Kim, C. Lee, H. S. Kim, S. C. Lim, and J. S. Ahn, "Classification of midinfrared spectra of colon cancer tissue using a convolutional neural network," Curr. Opt. Photonics 6, 92-103 (2022).
- R. K. Shori, A. A. Walston, O. M. Stafsudd, D. Fried, and J. T. Walsh, "Quantification and modeling of the dynamic changes in the absorption coefficient of water at λ=2.94 ㎛," IEEE J. Sel. Top. Quantum Electron. 7, 959-970 (2001). https://doi.org/10.1109/2944.983300
- M. Matsumoto, Y. Yoshimine, and A. Akamine, "Visualization of irrigant flow and cavitation induced by Er:YAG laser within a root canal model," J. Endod. 37, 839-843 (2011). https://doi.org/10.1016/j.joen.2011.02.035
- I. Apitz and A. Vogel, "Material ejection in nanosecond Er:YAG laser ablation of water, liver, and skin," Appl. Phys. A 81, 329-338 (2005). https://doi.org/10.1007/s00339-005-3213-5
- V. Fedorov, D. Martyshkin, K. Karki, and S. Mirov, "Q-switched and gain-switched Fe:ZnSe lasers tunable over 3.60-5.15 ㎛," Opt. Express 27, 13934-13941 (2019). https://doi.org/10.1364/OE.27.013934
- K. L. Vodopyanov, L. A. Kulevsky, V. G. Mikhalevich, and A. M. Rodin, "Laser-induced generation of subnanosecond sound pulses in liquids," Sov. Phys. JETP 64, 67-70 (1986).
- M. S. Islam, M. Younis, M. Mahmud, G. Carter, and F. S. Choa, "A peak detection based OOK photoacoustic modulation scheme for air to underwater communication," Opt. Commun. 529, 129078 (2023).
- A. Godard, "Infrared (2-12 ㎛) solid-state laser sources: a review," C. R. Phys. 8, 1100-1128 (2007). https://doi.org/10.1016/j.crhy.2007.09.010
- K. S. Bagdasarov, V. I. Zhekov, L. A. Kulevskiĩ, V. A. Lobachev, T. M. Murina, and A. M. Prokhorov, "Giant laser radiation pulses from erbium-doped yttrium aluminum garnet crystals," Sov. J. Quantum Electron. 10, 1127-1131 (1980). https://doi.org/10.1070/QE1980v010n09ABEH010665
- S. Georgescu and O. Toma, "Er:YAG three-micron laser: Performances and limits," IEEE J. Sel. Top. Quantum Electron. 11, 682-689 (2005). https://doi.org/10.1109/JSTQE.2005.850593
- J. P. Salvestrini, M. Abarkan, and M. D. Fontana, "Comparative study of nonlinear optical crystals for electro-optical Q-switching of laser resonators," Opt. Mater. 26, 449-458 (2004). https://doi.org/10.1016/j.optmat.2003.10.009
- H. Jeong and D.-I. Yeom, "Passively Q-switched Erbium doped all-fiber laser with high pulse energy based on evanescent field interaction with single-walled carbon nanotube saturable absorber," Curr. Opt. Photonics 1, 203-206 (2017).
- N. M. Wannop, M. R. Dickinson, A. Charlton, and T. A. King, "Q-switching the erbium-YAG laser," J. Mod. Opt. 41, 2043-2053 (1994). https://doi.org/10.1080/09500349414551921
- H. J. Eichler, B. Liu, M. Kayser, and S. I. Khomenko, "Er:YAG-laser at 2.94 ㎛ Q-switched by a FTIR-shutter with silicon output coupler and polarizer," Opt. Mater. 5, 259-265 (1996). https://doi.org/10.1016/0925-3467(96)00006-7
- M. Skorczakowski, P. Nyga, A. Zajac, and W. Zendzian, "2.94 ㎛ Er:YAG laser Q-switched with RTP Pockels cell," in Proc. European Conference on Lasers and Electro-Optics-CLEO/Europe 2003 (Munich, Germany, Jun. 22-27, 2003), p. 69.
- A. Zajac, M. Skorczakowski, J. Swiderski, and P. Nyga, "Electrooptically Q-switched mid-infrared Er:YAG laser for medical applications," Opt. Express 12, 5125-5130 (2004). https://doi.org/10.1364/OPEX.12.005125
- H. Jelinkova, J. Sulc, P. Koranda, M. Nemec, M. Cech, M. Jelinek, and V. Skoda, "LiNbO3 Pockels cell for Q-switch of Er:YAG laser," Laser Phys. Lett. 1, 59 (2004).
- J. Yang, L. Wang, X. Wu, T. Cheng, and H. Jiang, "High peak power Q-switched Er:YAG laser with two polarizers and its ablation performance for hard dental tissues," Opt. Express 22, 15686-15696 (2014). https://doi.org/10.1364/OE.22.015686
- F. E. Livingston, S. M. George, and R. K. Shori, "Optimization of a rotary Q-switched Er:YAG laser," Rev. Sci. Instrum. 73, 2526-2532 (2002). https://doi.org/10.1063/1.1488149
- M. Skorczakowski., J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprazak, S. Gross, A. Heinrich, and T. Bragagna, "Mid-infrared Q-switched Er:YAG laser for medical applications," Laser Phys. Lett. 7, 498-504 (2010). https://doi.org/10.1002/lapl.201010019
- K. Karki, V. Fedorov, D. Martyshkin, and S. Mirov, "High energy (0.8 J) mechanically Q-switched 2.94 ㎛ Er:YAG laser," Opt. Express 29, 4287-4295 (2021). https://doi.org/10.1364/OE.417301
- J. Badziak and A. Dubicki, "Generation of short high-power pulses in excimer lasers by fast pulse Q-switching," Opt. Quantum Electron. 24, 1381-1399 (1992). https://doi.org/10.1007/BF00625814
- P. Nyga, A. Zajac, M. Skorczakowski, P. Konieczny, and J. Swiderski, "Selection of electro-optic materials for Pockels cells used in Q-switched Er:YAG lasers," Proc. SPIE 5484, 336-339 (2004).
- N. M. Wannop, M. R. Dickinson, and T. A. King, "An erbium:YAG oscillator-amplifier laser system," Opt. Commun. 113, 453-457 (1995). https://doi.org/10.1016/0030-4018(94)00534-2