DOI QR코드

DOI QR Code

메탄올과 혼합 외부탄소원의 탈질성능과 박테리아 군집 비교

Denitrification Performance and Bacterial Community Structure of Methanol and Mixed Carbon Sources

  • 박수인 (부산대학교 사회환경시스템공학과) ;
  • 전준범 (부산대학교 사회환경시스템공학과) ;
  • 최민규 (다이텍연구원 물.환경연구단) ;
  • 김성진 (다이텍연구원 물.환경연구단) ;
  • 이상헌 (다이텍연구원 물.환경연구단) ;
  • 이태호 (부산대학교 사회환경시스템공학과) ;
  • 정상현 (부산대학교 사회환경시스템공학과) ;
  • 배효관 (울산과학기술원 도시환경공학과)
  • Suin Park (Department of Civil and Environmental Engineering, Pusan National University) ;
  • Junbeom Jeon (Department of Civil and Environmental Engineering, Pusan National University) ;
  • Minkyu Choi (Water.Environment Research Center, Korea Dyeing and Finishing Technology Institute (DYETEC)) ;
  • Sungjin Kim (Water.Environment Research Center, Korea Dyeing and Finishing Technology Institute (DYETEC)) ;
  • Sanghun Lee (Water.Environment Research Center, Korea Dyeing and Finishing Technology Institute (DYETEC)) ;
  • Taeho Lee (Department of Civil and Environmental Engineering, Pusan National University) ;
  • Sanghyun Jeong (Department of Civil and Environmental Engineering, Pusan National University) ;
  • Hyokwan Bae (Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology)
  • 투고 : 2023.01.03
  • 심사 : 2023.01.30
  • 발행 : 2023.01.30

초록

Denitrifying bacteria convert nitrate to nitrogen gas using an external carbon source as an electron donor. The external carbon source affects the denitrification performance and bacterial community structure. Although methanol is a cheap and effective external carbon source, the addition of diverse carbon sources may improve the total nitrogen removal rate and biomass characteristics, such as settleability. In this study, denitrifying reactions were performed using solely methanol and mixed carbon sources of methanol, glucose, and acetate in a sequencing batch reactor. The denitrifying reactor using methanol resulted in a total nitrogen removal rate of 0.39 ± 0.025 kg-N/m3-day while the suspended biomass transformed into dark brown granules. Methyloversatilis discipulorum had the highest predominance at 43.84%. The individual denitrifying biomasses, which were separately enriched with methanol, glucose, and acetate, showed the same total nitrogen removal performance of 0.39 ± 0.016 kg-N/m3-day. However, the addition of mixed carbon sources showed an improved total nitrogen removal rate of 0.42 ± 0.043 kg-N/m3-day, with the domination of Candidatus Saccaribacteria at 25.61%. The denitrifying granules turned pale yellow color. Influent COD/NO3--N ratios of 3.5, 5, and 7.5 exhibited COD/NO3--N consumptions of 4.3 ± 0.4, 4.4 ± 0.8, and 5.2 ± 0.7, and the consistent predominance of Candidatus Saccharibacteria.

키워드

과제정보

본 연구는 2021학년도 부산대학교 BK21 FOUR 대학원혁신지원사업 지원으로 이루어졌습니다.

참고문헌

  1. Adekunle, K. F. and Okolie, J. A. (2015). A review of biochemical process of anaerobic digestion, Advances in Bioscience and Biotechnology, 6(03), 205.
  2. American Public Health Association (APHA). (2005). Standard methods for the examination of water and wastewater, 21th ed., Washington DC, American Public Health Association.
  3. Anushya, R. and Gupta, S. K. (2008). Effect of COD/NO3--N ratio on the performance of a hybrid UASB reactor treating phenolic wastewater, Desalination, 232, 128-138, https://doi.org/10.1016/j.desal.2007.09.016
  4. Auclair, J., Parent, S., and Villemur, R. (2012). Functional diversity in the denitrifying biofilm of the methanol-fed marine denitrification system at the Montreal Biodome, Microbial Ecology, 63(4), 726-735. https://doi.org/10.1007/s00248-011-9960-2
  5. Baytshtok, V., Lu, H., Park, H., Kim, S., Yu, R., and Chandran, K. (2009). Impact of varying electron donors on the molecular microbial ecology and biokinetics of methylotrophic denitrifying bacteria, Biotechnology and Bioengineering, 102(6), 1527-1536. https://doi.org/10.1002/bit.22213
  6. Cao, C. and Lou, I. (2016). Analysis of environmental variables on population dynamic change of Haliscomenobacter hydrossis, the bulking causative filament in Macau wastewater treatment plant, Desalination and Water Treatment, 57(16), 7182-7195. https://doi.org/10.1080/19443994.2015.1014857
  7. Chen, C., Xu, X. J., Xie, P., Yuan, Y., Zhou, X., Wang, A. J., Lee, D. J., and Ren, N. Q. (2017). Pyrosequencing reveals microbial community dynamics in integrated simultaneous desulfurization and denitrification process at different influent nitrate concentrations, Chemosphere, 171, 294-301. https://doi.org/10.1016/j.chemosphere.2016.11.159
  8. Chen, H. B., Wang, D. B., Li, X. M., Yang, Q., and Zeng, G. M. (2015). Enhancement of post-anoxic denitrification for biological nutrient removal: Effect of different carbon sources, Environmental Science and Pollution Research, 22(8), 5887-5894. https://doi.org/10.1007/s11356-014-3755-1
  9. de Beer, D., O'Flaharty, V., Thaveesri, J., Lens, P., Verstraete, W., and de Beer, D. (1996). Distribution of extracellular polysaccharides and flotation of anaerobic sludge, Applied Microbiology and Biotechnology, 46, 197-201. https://doi.org/10.1007/s002530050805
  10. Del Rio, A. V., Buys, B., Campos, J. L., Mendez, R., and Mosquera-Corral, A. (2015). Optimizing upflow velocity and calcium precipitation in denitrifying granular systems, Process Biochemistry, 50(10), 1656-1661. https://doi.org/10.1016/j.procbio.2015.05.028
  11. Eom, H. and Kim, S. (2018). A study on the denitrification and microbial community characteristics by the change of C/N ratio of molasses and nitrate nitrogen, Korean Journal of Microbiology, 54(2), 105-112. https://doi.org/10.7845/KJM.2018.8013
  12. Fu, X., Hou, R., Yang, P., Qian, S., Feng, Z., Chen, Z., Wang, F., Yuan, R., Chen, H., and Zhou, B. (2022). Application of external carbon source in heterotrophic denitrification of domestic sewage: A review, Science of The Total Environment, 153061.
  13. Ginige, M. P., Hugenholtz, P., Daims, H., Wagner, M., Keller, J., and Blackall, L. L. (2004). Use of stable-isotope probing, full-cycle rRNA analysis, and fluorescence in situ hybridization-microautoradiography to study a methanol-fed denitrifying microbial community, Applied and Environmental Microbiology, 70(1), 588-596. https://doi.org/10.1128/AEM.70.1.588-596.2004
  14. Ginige, M. P., Keller, J., and Blackall, L. L. (2005). Investigation of an acetate-fed denitrifying microbial community by stable isotope probing, full-cycle rRNA analysis, and fluorescent in situ hybridization-microautoradiography, Applied and Environmental Microbiology, 71(12), 8683-8691. https://doi.org/10.1128/AEM.71.12.8683-8691.2005
  15. Grabovich, M., Gavrish, E., Kuever, J., Lysenko, A. M., Podkopaeva, D., and Dubinina, G. (2006). Proposal of Giesbergeria voronezhensis gen. nov., sp. nov. and G. kuznetsovii sp. nov. and reclassification of [Aquaspirillum] anulus,[A.] sinuosum and [A.] giesbergeri as Giesbergeria anulus comb. nov., G. sinuosa comb. nov. and G. giesbergeri comb. nov., and [Aquaspirillum] metamorphum and [A.] psychrophilum as Simplicispira metamorpha gen. nov., comb. nov. and S. psychrophila comb. nov., International Journal of Systematic and Evolutionary Microbiology, 56(3), 569-576. https://doi.org/10.1099/ijs.0.64027-0
  16. Hagman, M., Nielsen, J. L., Nielsen, P. H., and Jansen, J. L. C. (2008). Mixed carbon sources for nitrate reduction in activated sludge-identification of bacteria and process activity studies, Water Research, 42(6-7), 1539-1546. https://doi.org/10.1016/j.watres.2007.10.034
  17. He, Q., Song, J., Zhang, W., Gao, S., Wang, H., and Yu, J. (2020). Enhanced simultaneous nitrification, denitrification and phosphorus removal through mixed carbon source by aerobic granular sludge, Journal of Hazardous Materials, 382, 121043.
  18. He, Q., Song, Q., Zhang, S., Zhang, W., and Wang, H. (2018). Simultaneous nitrification, denitrification and phosphorus removal in an aerobic granular sequencing batch reactor with mixed carbon sources: reactor performance, extracellular polymeric substances and microbial successions, Chemical Engineering Journal, 331, 841-849. https://doi.org/10.1016/j.cej.2017.09.060
  19. Jin, X., Wang, F., Liu, G., and Yan, N. (2012). A key cultivation technology for denitrifying granular sludge, Process biochemistry, 47(7), 1122-1128. https://doi.org/10.1016/j.procbio.2012.04.001
  20. Kalyuzhnaya, M. G., Hristova, K. R., Lidstrom, M. E., and Chistoserdova, L. (2008). Characterization of a novel methanol dehydrogenase in representatives of Burkholderiales: implications for environmental detection of methylotrophy and evidence for convergent evolution, Journal of Bacteriology, 190(11), 3817-3823. https://doi.org/10.1128/JB.00180-08
  21. Kim, S. M., Kim, S. H., Choi, H. C., and Kim, I. S. (2004). Enhanced aerobic floc-like granulation and nitrogen removal in a sequencing batch reactor by selection of settling velocity, Water Science and Technology, 50(6), 157-162. https://doi.org/10.2166/wst.2004.0372
  22. Koh, J. S. (2019). Study on the risk of flammability & combustion of liquid mixtures such as alcohols, Journal of the Society of Disaster Information, 15(4), 634-647.
  23. Koren, D. W., Gould, W. D., and Bedard, P. (2000). Biological removal of ammonia and nitrate from simulated mine and mill effluents, Hydrometallurgy, 56(2), 127-144. https://doi.org/10.1016/S0304-386X(99)00088-2
  24. Li, E., Jin, X., and Lu, S. (2018). Microbial communities in biological denitrification system using methanol as carbon source for treatment of reverse osmosis concentrate from coking wastewater, Journal of Water Reuse and Desalination, 8(3), 360-371. https://doi.org/10.2166/wrd.2017.024
  25. Li, W., Zheng, P., Wu, Y. L., Zhan, E. C., Zhang, Z. H., Wang, R., Xing, Y. J., Abbas, G., and Zeb, B. S. (2014). Sludge bulking in a high-rate denitrifying automatic circulation (DAC) reactor, Chemical Engineering Journal, 240, 387-393. https://doi.org/10.1016/j.cej.2013.11.071
  26. Lim, S. J., Kim, T. H., Kim, T. H., and Shin, I. H. (2012). Deterioration of denitrification by oxygen and cost evaluation of electron donor in an uncovered pre-denitrification process, Korean Journal of Chemical Engineering, 29(9), 1196-1202. https://doi.org/10.1007/s11814-012-0004-5
  27. Liu, L., Tsyganova, O., Lee, D. J., Su, A., Chang, J. S., Wang, A., and Ren, N. (2012). Anodic biofilm in single-chamber microbial fuel cells cultivated under different temperatures, International Journal of Hydrogen Energy, 37(20), 15792-15800. https://doi.org/10.1016/j.ijhydene.2012.03.084
  28. Lopez-Barrera, J. A., Pena-Calva, A., Olayo, R., Gomez, J., and Cuervo-Lopez, F. (2006). Determination of denitrifying sludge settleability using contact angle measurements, Environmental Technology, 27(11), 1241-1247. https://doi.org/10.1080/09593332708618737
  29. Lu, H., Chandran, K., and Stensel, D. (2014). Microbial ecology of denitrification in biological wastewater treatment, Water Research, 64, 237-254. https://doi.org/10.1016/j.watres.2014.06.042
  30. Martineau, C., Mauffrey, F., and Villemur, R. (2015). Comparative analysis of denitrifying activities of hyphomicrobium nitrativorans, hyphomicrobium denitrificans, and hyphomicrobium zavarzinii, Applied and Environmental Microbiology, 81(15), 5003-5014. https://doi.org/10.1128/AEM.00848-15
  31. Mohlman, F. W. (1934). The sludge index, Sewage Works Journal, 119-122.
  32. Moussavi, G., Jafari, S. J., and Yaghmaeian, K. (2015). Enhanced biological denitrification in the cyclic rotating bed reactor with catechol as carbon source, Bioresource Technology, 189, 266-272. https://doi.org/10.1016/j.biortech.2015.04.019
  33. Narkis, N., Rebhun, M., and Sheindorf, C. H. (1979). Denitrification at various carbon to nitrogen ratios, Water Research, 13(1), 93-98. https://doi.org/10.1016/0043-1354(79)90259-8
  34. Nyberg, U., Aspegren, H., Andersson, B., Jansen, J. L. C., and Villadsen, I. S. (1992). Full-scale application of nitrogen removal with methanol as carbon source, Water Science and Technology, 26(5-6), 1077-1086. https://doi.org/10.2166/wst.1992.0549
  35. Pagacova, P., Galbova, K., Drtil, M., and Jonatova, I. (2010). Denitrification in USB reactor with granulated biomass, Bioresource technology, 101(1), 150-156. https://doi.org/10.1016/j.biortech.2009.08.021
  36. Park, J. H., Choi, O., Lee, T. H., Kim, H., and Sang, B. I. (2016). Pyrosequencing analysis of microbial communities in hollow fiber-membrane biofilm reactors system for treating high-strength nitrogen wastewater, Chemosphere, 163, 192-201. https://doi.org/10.1016/j.chemosphere.2016.07.099
  37. Park, S., Jeon, J., and Bae, H. (2020). High-rate denitrifying process based on methanol and characteristics of organic carbon uptake, Journal of Korean Society on Water Environment, 36(6), 581-591. https://doi.org/10.15681/KSWE.2020.36.6.581
  38. Pelaz, L., Gomez, A., Letona, A., Garralon, G., and Fdz-Polanco, M. (2018). Nitrogen removal in domestic wastewater. Effect of nitrate recycling and COD/N ratio, Chemosphere, 212, 8-14. https://doi.org/10.1016/j.chemosphere.2018.08.052
  39. Poehlein, A., Bengelsdorf, F. R., Schiel-Bengelsdorf, B., Daniel, R., and Durre, P. (2016). Genome sequence of the acetogenic bacterium Acetobacterium wieringae DSM 1911T, Genome Announcements, 4(6), e01430-16.
  40. Quan, Z. X., Im, W. T., and Lee, S. T. (2006). Azonexus caeni sp. nov., a denitrifying bacterium isolated from sludge of a wastewater treatment plant, International Journal of Systematic and Evolutionary Microbiology, 56, 1043-1046. https://doi.org/10.1099/ijs.0.64019-0
  41. Quan, Z. X., Jin, Y. S., Yin, C. R., Lee, J. J., and Lee, S. T. (2005). Hydrolyzed molasses as an external carbon source in biological nitrogen removal, Bioresource Technology, 96(15), 1690-1695. https://doi.org/10.1016/j.biortech.2004.12.033
  42. Reinhold-Hurek, B. and Hurek, T. (2000). Reassessment of the taxonomic structure of the diazotrophic genus Azoarcus sensu lato and description of three new genera and new species, Azovibrio restrictus gen. nov., sp. nov., Azospira oryzae gen. nov., sp. nov. and Azonexus fungiphilus gen. nov., sp. nov., International Journal of Systematic and Evolutionary Microbiology, 50, 649-660. https://doi.org/10.1099/00207713-50-2-649
  43. Ribera-Guardia, A., Kassotaki, E., Gutierrez, O., and Pijuan, M. (2014). Effect of carbon source and competition for electrons on nitrous oxide reduction in a mixed denitrifying microbial community, Process Biochemistry, 49(12), 2228-2234. https://doi.org/10.1016/j.procbio.2014.09.020
  44. Salah, Z. B., Charles, C. J., Humphreys, P. N., Laws, A. P., and Rout, S. P. (2019). Genomic insights into A novel, alkalitolerant nitrogen fixing bacteria, azonexus sp. strain ZS02, Journal of Genomics, 7, 1.
  45. Sheu, S. Y., Xie, Y. R., and Chen, W. M. (2019). Mucilaginibacter limnophilus sp. nov., isolated from a lake, Journal of Microbiology, 57(11), 967-975.
  46. Siddiqi, M. Z., Sok, W., Choi, G., Kim, S. Y., Wee, J. H., and Im, W. T. (2020). Simplicispira hankyongi sp. nov., a novel denitrifying bacterium isolated from sludge, Antonie Van Leeuwenhoek, 113(3), 331-338. https://doi.org/10.1007/s10482-019-01341-0
  47. Smalley, N. E., Taipale, S., De Marco, P., Doronina, N. V., Kyrpides, N., Shapiro, N., Woyke, T., and Kalyuzhnaya, M. G. (2015). Functional and genomic diversity of methylotrophic Rhodocyclaceae: description of Methyloversatilis discipulorum sp. nov., International journal of systematic and evolutionary microbiology, 65(Pt_7), 2227-2233. https://doi.org/10.1099/ijs.0.000190
  48. Sujit, S. D., Attarde, S. B., Wagh, N. D., and Ingale, S. T. (2014). Denitrification of wastewater using sludge and methanol as a carbon source, Universal Journal of Environmental Research and Technology, 4(3), 172-177
  49. Tay, J. H., Liu, Q. S., and Liu, Y. (2001). The effects of shear force on the formation, structure and metabolism of aerobic granules, Applied Microbiology and Biotechnology, 57(1), 227-233. https://doi.org/10.1007/s002530100766
  50. Torresi, E., Casas, M. E., Polesel, F., Plosz, B. G., Christensson, M., and Bester, K. (2017). Impact of external carbon dose on the removal of micropollutants using methanol and ethanol in post-denitrifying Moving Bed Biofilm Reactors, Water Research, 108, 95-105. https://doi.org/10.1016/j.watres.2016.10.068
  51. van der Hoek, J. P. (1988). Granulation of denitrifying sludge, Granular Anaerobic Sludge, 203-210.
  52. Van Rijn, J., Tal, Y., and Schreier, H. J. (2006). Denitrification in recirculating systems: Theory and applications, Aquacultural Engineering, 34(3), 364-376. https://doi.org/10.1016/j.aquaeng.2005.04.004
  53. Van Veen, W. L., Van Der Kooij, D., Geuze, E. C. W. A., and Van der Vlies, A. W. (1973). Investigations on the sheathed bacteriumHaliscomenobacter hydrossis gen. n., sp. n., isolated from activated sludge, Antonie van Leeuwenhoek, 39(1), 207-216. https://doi.org/10.1007/BF02578853
  54. Wang, H., Jiang, C., Wang, X., Xu, S., and Zhuang, X. (2021). Application of internal carbon source from sewage sludge: A vital measure to improve nitrogen removal efficiency of low C/N wastewater, Water, 13(17), 2338.
  55. Wang, Q., Feng, C., Zhao, Y., and Hao, C. (2009). Denitrification of nitrate contaminated groundwater with a fiber-based biofilm reactor, Bioresource Technology, 100(7), 2223-2227. https://doi.org/10.1016/j.biortech.2008.07.057
  56. Xiao, H., Wu, J., Peng, H., and Jiang, Z. (2020). Mixed carbon source improves deep denitrification performance in up-flow anaerobic sludge bed reactor, Water Science and Technology, 81(4), 763-772. https://doi.org/10.2166/wst.2020.159
  57. Xiujie, W., Weiqi, W., Jing, Z., Siyu, W., and Jun, L. (2019). Dominance of Candidatus saccharibacteria in SBRs achieving partial denitrification: effects of sludge acclimating methods on microbial communities and nitrite accumulation, RSC Advances, 9(20), 11263-11271. https://doi.org/10.1039/C8RA09518C
  58. Zhang, T., Cao, J., Zhu, Q., Fu, B., Yang, E., Fang, F., Feng, Q., and Luo, J. (2022). Revealing the characteristics and formation mechanisms of partial denitrification granular sludge for efficient nitrite accumulation driven by glycerol, Chemical Engineering Journal, 428, 131195.
  59. Zhou, J., Yu, X., Wang, Z., Ding, C., and Cai, W. (2010). A potential explanation for the effect of carbon source on the characteristics of acetate-fed and glucose-fed aerobic granules, African Journal of Biotechnology, 9(33), 5357-5365.
  60. Zhou, Y., Oehmen, A., Lim, M., Vadivelu, V., and Ng, W. J. (2011). The role of nitrite and free nitrous acid (FNA) in wastewater treatment plants, Water Research, 45(15), 4672-4682. https://doi.org/10.1016/j.watres.2011.06.025
  61. Zhu, C., Wang, H., Yan, Q., He, R., and Zhang, G. (2017). Enhanced denitrification at biocathode facilitated with biohydrogen production in a three-chambered bioelectrochemical system (BES) reactor, Chemical Engineering Journal, 312, 360-366. https://doi.org/10.1016/j.cej.2016.11.152
  62. Zielinska, M., Rusanowska, P., Jarzabek, J., and Nielsen, J. L. (2016). Community dynamics of denitrifying bacteria in full-scale wastewater treatment plants, Environmental Technology, 37(18), 2358-2367. https://doi.org/10.1080/09593330.2016.1150350