참고문헌
- American Cancer Society. Prostate cancer. Atlanta, GA: American Cancer Society. Available at. https://www.cancer.org/cancer/prostate-cancer.html. Published 2021. Accessed July 11, 2022
- Eichler K, Hempel S, Wilby J, Myers L, Bachmann LM, Kleijnen J. Diagnostic value of systematic biopsy methods in the investigation of prostate cancer: a systematic review. J Urol 2006;175:1605-1612 https://doi.org/10.1016/S0022-5347(05)00957-2
- Ahmed HU, El-Shater Bosaily A, Brown LC, Gabe R, Kaplan R, Parmar MK, et al. Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. Lancet 2017;389:815-822 https://doi.org/10.1016/S0140-6736(16)32401-1
- Pepe P, Fraggetta F, Galia A, Grasso G, Aragona F. Prostate cancer detection by TURP after repeated negative saturation biopsy in patients with persistent suspicion of cancer: a case-control study on 75 consecutive patients. Prostate Cancer Prostatic Dis 2010;13:83-86 https://doi.org/10.1038/pcan.2009.46
- Girouin N, Mege-Lechevallier F, Tonina Senes A, Bissery A, Rabilloud M, Marechal JM, et al. Prostate dynamic contrast-enhanced MRI with simple visual diagnostic criteria: is it reasonable? Eur Radiol 2007;17:1498-1509 https://doi.org/10.1007/s00330-006-0478-9
- Langer DL, van der Kwast TH, Evans AJ, Trachtenberg J, Wilson BC, Haider MA. Prostate cancer detection with multi-parametric MRI: logistic regression analysis of quantitative T2, diffusion-weighted imaging, and dynamic contrast-enhanced MRI. J Magn Reson Imaging 2009;30:327-334 https://doi.org/10.1002/jmri.21824
- Beerlage HP, Aarnink RG, Ruijter ET, Witjes JA, Wijkstra H, Van De Kaa CA, et al. Correlation of transrectal ultrasound, computer analysis of transrectal ultrasound and histopathology of radical prostatectomy specimen. Prostate Cancer Prostatic Dis 2001;4:56-62 https://doi.org/10.1038/sj.pcan.4500495
- Hoyt K, Castaneda B, Zhang M, Nigwekar P, di Sant'agnese PA, Joseph JV, et al. Tissue elasticity properties as biomarkers for prostate cancer. Cancer Biomark 2008;4:213-225 https://doi.org/10.3233/CBM-2008-44-505
- Bercoff J, Tanter M, Fink M. Supersonic shear imaging: a new technique for soft tissue elasticity mapping. IEEE Trans Ultrason Ferroelectr Freq Control 2004;51:396-409 https://doi.org/10.1109/TUFFC.2004.1295425
- Ahmad S, Cao R, Varghese T, Bidaut L, Nabi G. Transrectal quantitative shear wave elastography in the detection and characterisation of prostate cancer. Surg Endosc 2013;27:3280-3287 https://doi.org/10.1007/s00464-013-2906-7
- Woo S, Kim SY, Cho JY, Kim SH. Shear wave elastography for detection of prostate cancer: a preliminary study. Korean J Radiol 2014;15:346-355 https://doi.org/10.3348/kjr.2014.15.3.346
- Boehm K, Budaus L, Tennstedt P, Beyer B, Schiffmann J, Larcher A, et al. Prediction of significant prostate cancer at prostate biopsy and per core detection rate of targeted and systematic biopsies using real-time shear wave elastography. Urol Int 2015;95:189-196 https://doi.org/10.1159/000431233
- Chiu T, Xiong Z, Parsons D, Folkert MR, Medin PM, Hrycushko B. Low-cost 3D print-based phantom fabrication to facilitate interstitial prostate brachytherapy training program. Brachytherapy 2020;19:800-811 https://doi.org/10.1016/j.brachy.2020.06.015
- Lee DH, Lee JY, Bae JS, Yi NJ, Lee KW, Suh KS, et al. Shear-wave dispersion slope from US shear-wave elastography: detection of allograft damage after liver transplantation. Radiology 2019;293:327-333 https://doi.org/10.1148/radiol.2019190064
- Computerized Imaging Reference Systems. Multi-purpose, multi-tissue ultrasound phantom: model 040GSE. Norfolk, VA: Computerized Imaging Reference Systems. Available at. https://www.cirsinc.com/products/ultrasound/zerdine-hydrogel/multi-purpose-multi-tisse-ultrasound-phantom. Published 2013. Accessed June 13, 2022
- D'Souza WD, Madsen EL, Unal O, Vigen KK, Frank GR, Thomadsen BR. Tissue mimicking materials for a multiimaging modality prostate phantom. Med Phys 2001;28:688-700 https://doi.org/10.1118/1.1354998
- King RL, Liu Y, Maruvada S, Herman BA, Wear KA, Harris GR. Development and characterization of a tissuemimicking material for high-intensity focused ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control 2011;58:1397-1405 https://doi.org/10.1109/TUFFC.2011.1959
- Barr RG, Memo R, Schaub CR. Shear wave ultrasound elastography of the prostate: initial results. Ultrasound Q 2012;28:13-20 https://doi.org/10.1097/RUQ.0b013e318249f594
- Cao R, Huang Z, Varghese T, Nabi G. Tissue mimicking materials for the detection of prostate cancer using shear wave elastography: a validation study. Med Phys 2013;40:022903
- Palmeri M, Nightingale K, Fielding S, Rouze N, Deng Y, Lynch T, et al. RSNA QIBA ultrasound shear wave speed phase II phantom study in viscoelastic media. Proceedings of the 2015 IEEE International Ultrasonics Symposium (IUS); 2015 Oct 21-24; Taipei, Taiwan: IEEE; 2015; p.1-4
- Alrashed AI, Alfuraih AM. Reproducibility of shear wave elastography among operators, machines, and probes in an elasticity phantom. Ultrasonography 2020;40:158-166 https://doi.org/10.14366/usg.20011
- Hwang J, Yoon HM, Jung AY, Lee JS, Cho YA. Comparison of 2-dimensional shear wave elastographic measurements using ElastQ imaging and SuperSonic shear imaging: phantom study and clinical pilot study. J Ultrasound Med 2020;39:311-321 https://doi.org/10.1002/jum.15108
- Shin HJ, Kim MJ, Kim HY, Roh YH, Lee MJ. Comparison of shear wave velocities on ultrasound elastography between different machines, transducers, and acquisition depths: a phantom study. Eur Radiol 2016;26:3361-3367 https://doi.org/10.1007/s00330-016-4212-y
- Hwang JA, Jeong WK, Song KD, Kang KA, Lim HK. 2-D shear wave elastography for focal lesions in liver phantoms: effects of background stiffness, depth and size of focal lesions on stiffness measurement. Ultrasound Med Biol 2019;45:3261-3268 https://doi.org/10.1016/j.ultrasmedbio.2019.08.006
- Fukuhara T, Matsuda E, Fujiwara K, Tanimura C, Izawa S, Kataoka H, et al. Phantom experiment and clinical utility of quantitative shear wave elastography for differentiating thyroid nodules. Endocr J 2014;61:615-621 https://doi.org/10.1507/endocrj.EJ14-0061
- Seliger G, Chaoui K, Kunze C, Dridi Y, Jenderka KV, Wienke A, et al. Intra- and inter-observer variation and accuracy using different shear wave elastography methods to assess circumscribed objects - a phantom study. Med Ultrason 2017;19:357-365 https://doi.org/10.11152/mu-1080
- Korta Martiartu N, Nambiar S, Nascimento Kirchner I, Paverd C, Cester D, Frauenfelder T, et al. Sources of variability in shear wave speed and dispersion quantification with ultrasound elastography: a phantom study. Ultrasound Med Biol 2021;47:3529-3542 https://doi.org/10.1016/j.ultrasmedbio.2021.08.013
- Lee SM, Chang W, Kang HJ, Ahn SJ, Lee JH, Lee JM. Comparison of four different shear wave elastography platforms according to abdominal wall thickness in liver fibrosis evaluation: a phantom study. Med Ultrason 2019;21:22-29 https://doi.org/10.11152/mu-1737
- Mun HS, Choi SH, Kook SH, Choi Y, Jeong WK, Kim Y. Validation of intra- and interobserver reproducibility of shearwave elastography: phantom study. Ultrasonics 2013;53:1039-1043 https://doi.org/10.1016/j.ultras.2013.01.013