DOI QR코드

DOI QR Code

정상 흉부 단층촬영 검사에서 흡연 및 폐쇄성 폐질환 유무에 따른 정량화 검사 분석

Quantitative CT Analysis Based on Smoking Habits and Chronic Obstructive Pulmonary Disease in Patients with Normal Chest CT

  • 변정희 (전북대학교 의과대학 전북대학교병원 임상의학연구소-의생명연구원 영상의학과) ;
  • 진공용 (전북대학교 의과대학 전북대학교병원 임상의학연구소-의생명연구원 영상의학과) ;
  • 한영민 (전북대학교 의과대학 전북대학교병원 임상의학연구소-의생명연구원 영상의학과) ;
  • 최은정 (전북대학교 의과대학 전북대학교병원 임상의학연구소-의생명연구원 영상의학과) ;
  • 채금주 (전북대학교 의과대학 전북대학교병원 임상의학연구소-의생명연구원 영상의학과) ;
  • 박은혜 (전북대학교 의과대학 전북대학교병원 임상의학연구소-의생명연구원 영상의학과)
  • Jung Hee Byon (Department of Radiology, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital) ;
  • Gong Yong Jin (Department of Radiology, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital) ;
  • Young Min Han (Department of Radiology, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital) ;
  • Eun Jung Choi (Department of Radiology, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital) ;
  • Kum Ju Chae (Department of Radiology, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital) ;
  • Eun Hae Park (Department of Radiology, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital)
  • 투고 : 2022.09.26
  • 심사 : 2022.11.13
  • 발행 : 2023.07.01

초록

목적 정상으로 보이는 chest CT를 정량화 분석하여 흡연 및 폐쇄성 폐질환(chronic obstructive pulmonary disease; 이하 COPD) 여부에 따른 차이가 있는지 확인하고자 하였다. 대상과 방법 2013년 1월부터 2014년 12월까지 chest CT가 정상이면서 정량화 분석이 있는 90명의 남자 환자[COPD 없는 비흡연자(n = 38)와 흡연자(n = 45), COPD 흡연자(n = 7)]를 대상으로 하였다. COPD 흡연자 7명을 대상으로 나이를 추출하여 환자-대조군 연구도 하위 분석하였다. Pi10, 왜도, 첨도, 평균감쇠계수, 저감쇠영역%와 같은 정령화 변수를 분석하였다. 결과 COPD가 없는 환자 중에서 흡연자의 Pi10 (4.176 ± 0.282, n = 45)이 비흡연자에 비해 약 0.1 mm 정도 두꺼웠고(4.070 ± 0.191, n = 38, p = 0.047), 흡연자의 왜도와 첨도(2.628 ± 0.484 and 6.448 ± 3.427)가 비흡연자보다 낮았다(2.884 ± 0.624, p = 0.038 and 8.594 ± 4.944, p = 0.027). COPD가 있는 흡연자들의 Pi10 (4.427 ± 0.437, n = 7)이 COPD가 없는 비흡연자들보다 약 0.4 mm 두꺼웠다(4.001 ± 0.108, n = 14, p = 0.005). 그러나 평균감쇠계수와 저감쇠영역%에서는 유의한 차이가 없었다. 결론 정상 chest CT를 보이더라도 QCT로 COPD의 유무와 상관없이 흡연자들의 소기도가 두꺼운 것을 알 수 있으며 이는 폐실질 변화보다 더 선행한다.

Purpose To assess normal CT scans with quantitative CT (QCT) analysis based on smoking habits and chronic obstructive pulmonary disease (COPD). Materials and Methods From January 2013 to December 2014, 90 male patients with normal chest CT and quantification analysis results were enrolled in our study [non-COPD never-smokers (n = 38) and smokers (n = 45), COPD smokers (n = 7)]. In addition, an age-matched cohort study was performed for seven smokers with COPD. The square root of the wall area of a hypothetical bronchus of internal perimeter 10 mm (Pi10), skewness, kurtosis, mean lung attenuation (MLA), and percentage of low attenuation area (%LAA) were evaluated. Results Among patients without COPD, the Pi10 of smokers (4.176 ± 0.282) was about 0.1 mm thicker than that of never-smokers (4.070 ± 0.191, p = 0.047), and skewness and kurtosis of smokers (2.628 ± 0.484 and 6.448 ± 3.427) were lower than never-smokers (2.884 ± 0.624, p = 0.038 and 8.594 ± 4.944, p = 0.02). The Pi10 of COPD smokers (4.429 ± 0.435, n = 7) was about 0.4 mm thicker than never-smokers without COPD (3.996 ± 0.115, n = 14, p = 0.005). There were no significant differences in MLA and %LAA between groups (p > 0.05). Conclusion Even on normal CT scans, QCT showed that the airway walls of smokers are thicker than never-smokers regardless of COPD and it preceded lung parenchymal changes.

키워드

과제정보

This study was supported by the research institute of clinical medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital.

참고문헌

  1. Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med 2006;3:e442 
  2. Halbert RJ, Natoli JL, Gano A, Badamgarav E, Buist AS, Mannino DM. Global burden of COPD: systematic review and meta-analysis. Eur Respir J 2006;28:523-532  https://doi.org/10.1183/09031936.06.00124605
  3. Kaplan A, Thomas M. Screening for COPD: the gap between logic and evidence. Eur Respir Rev 2017;26:160113 
  4. Soriano JB, Polverino F, Cosio BG. What is early COPD and why is it important? Eur Respir J 2018;52:1801448 
  5. Schroeder JD, McKenzie AS, Zach JA, Wilson CG, Curran-Everett D, Stinson DS, et al. Relationships between airflow obstruction and quantitative CT measurements of emphysema, air trapping, and airways in subjects with and without chronic obstructive pulmonary disease. AJR Am J Roentgenol 2013;201:W460-W470  https://doi.org/10.2214/AJR.12.10102
  6. Lynch DA, Al-Qaisi MA. Quantitative computed tomography in chronic obstructive pulmonary disease. J Thorac Imaging 2013;28:284-290  https://doi.org/10.1097/RTI.0b013e318298733c
  7. Grydeland TB, Dirksen A, Coxson HO, Pillai SG, Sharma S, Eide GE, et al. Quantitative computed tomography: emphysema and airway wall thickness by sex, age and smoking. Eur Respir J 2009;34:858-865  https://doi.org/10.1183/09031936.00167908
  8. Regan EA, Hokanson JE, Murphy JR, Make B, Lynch DA, Beaty TH, et al. Genetic epidemiology of COPD (COPDGene) study design. COPD 2011;7:32-43  https://doi.org/10.3109/15412550903499522
  9. Global Intiative for Chronic Obstructive Lung Disease (GOLD). Global strategry for the diagnosis, management, and prevention of chronic obstructive pulmontary disease. 2022 Report. Available at: https://goldcopd.org/. Accessed September 22, 2022 
  10. Patel BD, Coxson HO, Pillai SG, Agusti AG, Calverley PM, Donner CF, et al. Airway wall thickening and emphysema show independent familial aggregation in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2008;178:500-505  https://doi.org/10.1164/rccm.200801-059OC
  11. Donohue KM, Hoffman EA, Baumhauer H, Guo J, Budoff M, Austin JH, et al. Cigarette smoking and airway wall thickness on CT scan in a multi-ethnic cohort: the MESA lung study. Respir Med 2012;106:1655-1664  https://doi.org/10.1016/j.rmed.2012.08.006
  12. Kim SS, Jin GY, Li YZ, Lee JE, Shin HS. CT quantification of lungs and airways in normal Korean subjects. Korean J Radiol 2017;18:739-748  https://doi.org/10.3348/kjr.2017.18.4.739
  13. Berger P, Perot V, Desbarats P, Tunon-de-Lara JM, Marthan R, Laurent F. Airway wall thickness in cigarette smokers: quantitative thin-section CT assessment. Radiology 2005;235:1055-1064  https://doi.org/10.1148/radiol.2353040121
  14. Koo HJ, Lee SM, Seo JB, Lee SM, Kim N, Oh SY, et al. Prediction of pulmonary function in patients with chronic obstructive pulmonary disease: correlation with quantitative CT parameters. Korean J Radiol 2019;20:683-692  https://doi.org/10.3348/kjr.2018.0391
  15. Di Stefano A, Turato G, Maestrelli P, Mapp CE, Ruggieri MP, Roggeri A, et al. Airflow limitation in chronic bronchitis is associated with T-lymphocyte and macrophage infiltration of the bronchial mucosa. Am J Respir Crit Care Med 1996;153:629-632  https://doi.org/10.1164/ajrccm.153.2.8564109
  16. Haraguchi M, Shimura S, Shirato K. Morphometric analysis of bronchial cartilage in chronic obstructive pulmonary disease and bronchial asthma. Am J Respir Crit Care Med 1999;159:1005-1013  https://doi.org/10.1164/ajrccm.159.3.9712144
  17. Tiddens HA, Pare PD, Hogg JC, Hop WC, Lambert R, de Jongste JC. Cartilaginous airway dimensions and airflow obstruction in human lungs. Am J Respir Crit Care Med 1995;152:260-266  https://doi.org/10.1164/ajrccm.152.1.7599833
  18. Ashraf H, Lo P, Shaker SB, de Bruijne M, Dirksen A, Tonnesen P, et al. Short-term effect of changes in smoking behaviour on emphysema quantification by CT. Thorax 2011;66:55-60  https://doi.org/10.1136/thx.2009.132688
  19. Shaker SB, Stavngaard T, Laursen LC, Stoel BC, Dirksen A. Rapid fall in lung density following smoking cessation in COPD. COPD 2011;8:2-7  https://doi.org/10.3109/15412555.2010.541306
  20. Best AC, Meng J, Lynch AM, Bozic CM, Miller D, Grunwald GK, et al. Idiopathic pulmonary fibrosis: physiologic tests, quantitative CT indexes, and CT visual scores as predictors of mortality. Radiology 2008;246:935-940  https://doi.org/10.1148/radiol.2463062200
  21. Best AC, Lynch AM, Bozic CM, Miller D, Grunwald GK, Lynch DA. Quantitative CT indexes in idiopathic pulmonary fibrosis: relationship with physiologic impairment. Radiology 2003;228:407-414  https://doi.org/10.1148/radiol.2282020274
  22. Yamashiro T, Matsuoka S, Estepar RS, Bartholmai BJ, Diaz A, Ross JC, et al. Kurtosis and skewness of density histograms on inspiratory and expiratory CT scans in smokers. COPD 2011;8:13-20  https://doi.org/10.3109/15412555.2010.541537
  23. Yuan R, Mayo JR, Hogg JC, Pare PD, McWilliams AM, Lam S, et al. The effects of radiation dose and CT manufacturer on measurements of lung densitometry. Chest 2007;132:617-623  https://doi.org/10.1378/chest.06-2325
  24. Wielputz MO, Bardarova D, Weinheimer O, Kauczor HU, Eichinger M, Jobst BJ, et al. Variation of densitometry on computed tomography in COPD--influence of different software tools. PLoS One 2014;9:e112898