References
- A. Ambrosetti, H. Brezis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal., 122 (1994), 519-543. https://doi.org/10.1006/jfan.1994.1078
- R.B. Assuncao, O.H. Miyagaki, L.C. Paes-Leme and B.M. Rodrigues, Existence and Multiplicity Results for an Elliptic Problem Involving Cylindrical Weights and a Homogeneous Terms µ, Mediterranean J. Math., 2019 (2019), 1-10.
- M. Badiale, V. Bergio and S. Rolando, A nonlinear elliptic equation with singular potential and applications to nonlinear field equations, J. Eur. Math. Soc., 9 (2007), 355-381. https://doi.org/10.4171/jems/83
- M. Badiale, M, Guida and S. Rolando, Elliptic equations with decaying cylindrical potentials and power-type nonlinearities, Adv. Diff. Equ., 12 (2007) 1321-1362.
- M. Badiale and G. Tarantello, A Sobolev-Hardy inequality with applications to a nonlinear elliptic equation arising in astrophysics, Arch. Ration. Mech. Anal., 163 (2002), 252-293. https://doi.org/10.1007/s002050200201
- M. Bhakta and K. Sandeep, Hardy-Sobolev-Maz'ya type equations in bounded domains, J. Diffe. Equ., 247 (2009), 119-139. https://doi.org/10.1016/j.jde.2008.12.011
- K.J. Brown and Y. Zhang, The Nehari manifold for a semilinear elliptic equation with a signchanging weight function, J. Diff. Equ., 193 (2003), 481-499. https://doi.org/10.1016/S0022-0396(03)00121-9
- D.M. Cao, S.J. Peng and S.S. Yan, Infinitely many solutions for p-Laplacian equation involving critical Sobolev growth, J. Funct. Anal., 262 (2012), 2861-2902. https://doi.org/10.1016/j.jfa.2012.01.006
- P. Drabek, A. Kufner and F. Nicolosi, Quasilinear Elliptic Equations with Degenerations and Singularities, Walter de Gruyter Series in Nonlinear Analysis and Applications, 5, New York, 1997.
- D.G. de Figueiredo, J.P. Gossez and P. Ubilla, Local superlinearity and sublinearity for indefinite semilinear elliptic problemsm, J. Funct. Anal., 199 (2003), 452-467. https://doi.org/10.1016/S0022-1236(02)00060-5
- R. Filippucci, P. Pucci and F. Robert, On a p-Laplace equation with multiple critical nonlinearities, J. Math. Pure Appl., 91 (2009), 156-177. https://doi.org/10.1016/j.matpur.2008.09.008
- M. Gazzini, A. Ambrosetti and R. Musina, Nonlinear elliptic problems related to some integral inequalities, http://digitallibrary.sissa.it/retrieve/4320/PhDThesisGazzini.pdf.
- M. Gazzini and R. Mussina, On a Sobolev type inequality related to the weighted p-Laplace operator, J. Math. Anal. Appl., 352 (2009), 99-111. https://doi.org/10.1016/j.jmaa.2008.06.021
- Y.Y. Li, Q.Q. Guo and P.C. Niu, Global compactness results for quasilinear elliptic problems with combined critical Sobolev-Hardy terms, Nonlinear Anal., 74 (2011), 1445-1464. https://doi.org/10.1016/j.na.2010.10.018
- R. Musina, Ground state solutions of a critical problem involving cylindrical weights, Nonlinear Anal., 68 (2008), 3972-3986. https://doi.org/10.1016/j.na.2007.04.034
- G. Tarantello, Multiplicity results for an inhomogeneous Neumann problem critical exponent, Manuscripta Math., 81 (1993), 57-78. https://doi.org/10.1007/BF02567844
- T.F. Wu, Multiplicity results for a semilinear elliptic equation involving sign-changing weight function, Rocky Mountain J. Math., 39(3) (2009), 995-1011. https://doi.org/10.1216/RMJ-2009-39-3-995
- B.J. Xuan, Multiple solutions to p-Laplacian equation with singularity and cylindrical symmetry, Nonlinear Anal., 55 (2003), 217-232. https://doi.org/10.1016/S0362-546X(03)00224-4
- X. Zhang and C. Yuan, Twin of positive solutions for four-point singular boundary value problems with p-Laplacian operator, Nonlinear Funct. anal. appl., 14(2)(2009), 167-180. https://doi.org/10.1155/2009/103276