DOI QR코드

DOI QR Code

2022년 발생한 기록적인 유럽 폭염 발생의 역학적 원인 규명 연구

Understanding Physical Mechanism of 2022 European Heat Wave

  • 김주헌 (부경대학교 지구환경시스템과학부 환경대기과학전공) ;
  • 양군환 (부경대학교 지구환경시스템과학부 환경대기과학전공) ;
  • 성현준 (부경대학교 지구환경시스템과학부 환경대기과학전공) ;
  • 박정현 (부경대학교 지구환경시스템과학부 환경대기과학전공) ;
  • 서은교 (부경대학교 지구환경시스템과학부 환경대기과학전공)
  • Ju Heon Kim (Department of Environmental Atmospheric Sciences, Pukyong National University) ;
  • Gun-Hwan Yang (Department of Environmental Atmospheric Sciences, Pukyong National University) ;
  • Hyun-Joon Sung (Department of Environmental Atmospheric Sciences, Pukyong National University) ;
  • Jung Hyun Park (Department of Environmental Atmospheric Sciences, Pukyong National University) ;
  • Eunkyo Seo (Department of Environmental Atmospheric Sciences, Pukyong National University)
  • 투고 : 2023.04.11
  • 심사 : 2023.05.23
  • 발행 : 2023.05.31

초록

This study investigates the physical mechanisms that contributed to the 2022 European record-breaking heatwave throughout May-August (MJJA). The European climate has experienced surface warming and drying in the recent decade (1979~2022) which influences the development of the 2022 European heatwave. Since its spatial pattern resembles the 2003 European heatwave which is a well-known case developed by the strong coupling of near-surface conditions to land surface processes, the 2022 heatwave is compared with the 2003 case. Understanding heatwave development is carried out by the European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis version 5 (ERA5) and daily maximum surface temperature released by NCEP (National Centers for Environmental Prediction) CPC (Climate Prediction Center). The results suggest that the persistent high pressure along with clear sky tends to increase the downward shortwave radiation which leads to enhanced sensible heat flux with the land surface dryness. Terrestrial Coupling Index (TCI), a process-based multivariate metric, is employed to quantitatively measure segmented feedback processes, separately for the land, atmosphere, and two-legged couplings, which appears to the development of the 2022 heatwave, can be viewed as an expression of the recent trends, amplified by internal land-atmosphere interactions.

키워드

과제정보

이 논문은 20 22학년도 부경대학교의 지원을 받아 수행된 연구임(202212460001).

참고문헌

  1. Benson, D. O., and P. A. Dirmeyer, 2021: Characterizing the relationship between temperature and soil moisture extremes and their role in the exacerbation of heat waves over the contiguous United States. J. Climate, 34, 2175-2187, doi:10.1175/JCLI-D-20-0440.1.
  2. Coumou, D., and S. Rahmstorf, 2012: A decade of weather extremes. Nature Climate Change, 2, 491-496, doi:10.1038/nclimate1452.
  3. Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553-597, doi:10.1002/qj.828.
  4. Dirmeyer, P. A., 2011: The terrestrial segment of soil moisture-climate coupling. Geophys. Res. Lett., 38, 1-5, doi:10.1029/2011GL048268.
  5. Dirmeyer, P. A., G. Balsamo, E. M. Blyth, R. Morrison, and H. M. Cooper, 2021: Land-Atmosphere Interactions Exacerbated the Drought and Heatwave Over Northern Europe During Summer 2018. AGU Adv., 2, 1-16, doi:10.1029/2020av000283.
  6. Dirmeyer, P. A., J. Wei, M. G. Bosilovich, and D. Mocko, 2014: Intensified land surface control on boundary layer growth in a changing climate. Geophysical, 41, 1-5, doi:10.1002/2013GL058826.
  7. Duchez, A., E. Frajka-williams, S. A. Josey, D. G. Evans, and J. P. Grist, 2016: Drivers of exceptionally cold North Atlantic Ocean temperatures and their link to the 2015 European heat wave. Environ. Res. Lett., 11, 074004, doi:10.1088/1748-9326/11/7/074004.
  8. Fischer, E. M., S. I. Seneviratne, D. Luthi, and C. Schar, 2007a: Contribution of land-atmosphere coupling to recent European summer heat waves. Geophys. Res. Lett., 34, 1-6, doi:10.1029/2006GL029068.
  9. Fischer, E. M., S. I. Seneviratne, P. L. Vidale, D. Luthi, and C. Schar, 2007b: Soil moisture-atmosphere interactions during the 2003 European summer heat wave. J. Climate, 20, 5081-5099, doi:10.1175/JCLI4288.1.
  10. Garcia-Herrera, R., J. Diaz, R. M. Trigo, J. Luterbacher, and E. M. Fischer, 2010: A review of the european summer heat wave of 2003. Critical Rev. Environ. Sci. Technol., 40, 267-306, doi:10.1080/10643380802238137.
  11. Ha, K. J., Y. W. Seo, J. H. Yeo, A. Timmermann, E. S. Chung, C. L. E. Franzke, J. C. L. Chan, S. W. Yeh, and M. Ting, 2022: Dynamics and characteristics of dry and moist heatwaves over East Asia. npj Climate and Atmos. Sci., 5, 1-11, doi:10.1038/s41612-022-00272-4.
  12. Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 1999-2049, doi:10.1002/qj.3803.
  13. Hoelzle, M., C. Hauck, T. Mathys, J. Noetzli, C. Pellet, and M. Scherler, 2022: Long-term energy balance measurements at three different mountain permafrost sites in the Swiss Alps. Earth System Science Data, 14, 1531-1547, doi:10.5194/essd-14-1531-2022.
  14. Lawrence, M. G., 2005: The relationship between relative humidity and the dewpoint temperature in moist air, A simple conversion and applications, Bull. Amer. Meteor. Soc., 86, 225-233, doi:10.1175/BAMS-86-2-225.
  15. Lee, W.-S., and M.-I. Lee, 2016: Interannual variability of heat waves in South Korea and their connection with large-scale atmospheric circulation patterns. Int. J. Climatol., 36, 4815-4830, doi:10.1002/joc.4671.
  16. Min, K. H., C. H. Chung, J. H. Bae, and D. H. Cha, 2020: Synoptic characteristics of extreme heatwaves over the Korean Peninsula based on ERA Interim reanalysis data. Int. J. Climatol., 40, 3179-3195, doi:10.1002/joc.6390.
  17. Perkins-Kirkpatrick, S. E., and S. C. Lewis, 2020: Increasing trends in regional heatwaves. Nature Commun., 11, 1-8, doi:10.1038/s41467-020-16970-7.
  18. Reichle, R. H., and Coauthors, 2017: Assessment of the SMAP level-4 surface and root-zone soil moisture product using in situ measurements. J. Hydrometeor., 18, 2621-2645, doi:10.1175/JHM-D-17-0063.1.
  19. Rousi, E., K. Kornhuber, G. Beobide-Arsuaga, F. Luo, and D. Coumou, 2022: Accelerated western European heatwave trends linked to more-persistent double jets over Eurasia. Nature Commun., 13, 1-11, doi:10.1038/s41467-022-31432-y.
  20. Russo, S., and Coauthors, 2014: Magnitude of extreme heat waves in present climate and their projection in a warming world. J. Geophys. Res. Atmos., 119, 12500-12512, doi:10.1002/2014JD022098.
  21. Santanello, J. A., C. D. Peters-Lidard, and S. V. Kumar, 2011: Diagnosing the sensitivity of local land-atmosphere coupling via the soil moisture-boundary layer interaction. J. Hydrometeor., 12, 766-786, doi:10.1175/JHM-D-10-05014.1.
  22. Seneviratne, S. I., T. Corti, E. L. Davin, M. Hirschi, E. B. Jaeger, I. Lehner, B. Orlowsky, and A. J. Teuling, 2010: Investigating soil moisture-climate interactions in a changing climate: A review. Earth-Sci. Rev., 99, 125-161. doi:10.1016/j.earscirev.2010.02.004.
  23. Seo, E., and Coauthors, 2019: Impact of soil moisture initialization on boreal summer subseasonal forecasts: mid-latitude surface air temperature and heat wave events. Climate Dyn., 52, 1695-1709, doi:10.1007/s00382-018-4221-4.
  24. Seo, E., and P. A. Dirmeyer, 2022a: Improving the ESA CCI daily soil moisture time series with physically based land surface model datasets using a Fourier time-filtering method. J. Hydrometeor., 23, 473-489. doi:10.1175/JHM-D-21-0120.1.
  25. Seo, E., and P. A. Dirmeyer, 2022b: Understanding the diurnal cycle of land-atmosphere interactions from flux site observations. Hydrology and Earth Sys. Sci., 26, 5411-5429, doi:10.5194/hess-26-5411-2022.
  26. Seo, E., M. I. Lee, and R. H. Reichle, 2021: Assimilation of SMAP and ASCAT soil moisture retrievals into the JULES land surface model using the Local Ensemble Transform Kalman Filter. Remote Sens. Environ., 253, 112222, doi:10.1016/j.rse.2020.112222.
  27. Seo, E., M. I. Lee, S. D. Schubert, R. D. Koster, and H. S. Kang, 2020: Investigation of the 2016 Eurasia heat wave as an event of the recent warming. Environ. Res. Lett., 15, 114018, doi:10.1088/1748-9326/abbbae.
  28. Westerling, A. L., H. G. Hidalgo, D. R. Cayan, and T. W. Swetnam, 2006: Warming and earlier spring increase western U.S. forest wildfire activity. Science, 313, 940-943, doi:10.1126/science.1128834.
  29. Whan, K., J. Zscheischler, R. Orth, M. Shongwe, M. Rahimi, E. O. Asare, and S. I. Seneviratne, 2015: Impact of soil moisture on extreme maximum temperatures in Europe. Weather and Climate Extremes, 9, 57-67, doi:10.1016/j.wace.2015.05.001.
  30. WMO, 2011: Weather extremes in a changing climate: Hindsight on foresight. World Meteorological Organization, 20 pp.
  31. Yoon, D., D.-H. Cha, M.-I. Lee, K.-H. Min, S.-Y. Jun, and Y. Choi, 2021: Comparison of Regional Climate Model Performances for Different Types of Heat Waves over South Korea. J. Climate., 34, 2157-2174, doi:10.1175/JCLI-D-20-0422.1.
  32. Yoon, D., D.-H. Cha, M.-I. Lee, K.-H. Min, J. Kim, S.-Y. Jun, and Y. Choi, 2020: Recent changes in heatwave characteristics over Korea. Climate Dyn., 55, 1685-1696, doi:10.1007/s00382-020-05420-1.
  33. Yoon, D., T. Kang, D. Cha, C. Song, M. Lee, K. Min, J. Kim, J. A. Chun, and E. Seo, 2023: Role of Land - Atmosphere Interaction in the 2016 Northeast Asia Heat Wave : Impact of Soil Moisture Initialization. J. Geophys. Res. Atmos., 128, 1-16, doi:10.1029/2022JD037718.