Acknowledgement
This study was supported by the National Key R&D Program of China (2017YFE0135200).
References
- Ordaz-Trinidad N, Dorantes-Alvarez L, Salas-Benito J. Patents on phytochemicals: methodologies of extraction, application in food and pharmaceutical industry. Recent Pat Biotechnol 2015;9:158-67. https://doi.org/10.2174/1872208310999160317145333
- Righi F, Pitino R, Manuelian CL, et al. Plant feed additives as natural alternatives to the use of synthetic antioxidant vitamins on poultry performances, health, and oxidative status: a review of the literature in the last 20 years. Antioxidants 2021;10:659. https://doi.org/10.3390/antiox10050659
- Bosco AD, Mugnai C, Amato MG, Piottoli L, Cartoni A, Castellini C. Effect of slaughtering age in different commercial chicken genotypes reared according to the organic system: 1. Welfare, carcass and meat traits. Ital J Anim Sci 2014;13:3308. https://doi.org/10.4081/ijas.2014.3308
- Mahiza MIN, Lokman HI, Ibitoye EB. Fatty acid profile in the breast and thigh muscles of the slow- and fast-growing birds under the same management system. Trop Anim Health Prod 2021;53:409. https://doi.org/10.1007/s11250-021-02777-1
- Devatkal SK, Naveena BM, Kotaiah T. Quality, composition, and consumer evaluation of meat from slow-growing broilers relative to commercial broilers. Poult Sci 2019;98:6177-86. https://doi.org/10.3382/ps/pez344
- Choct M, Naylor A, Oddy H, Nolan J. Increasing efficiency of lean tissue deposition in broiler chickens. Rural Industries Research and Development Corporation; 2000. RIRDC Publication No 98/123.
- Demeure O, Duclos MJ, Bacciu N, et al. Genome-wide interval mapping using SNPs identifies new QTL for growth, body composition and several physiological variables in an F2 intercross between fat and lean chicken lines. Genet Sel Evol 2013;45:36. https://doi.org/10.1186/1297-9686-45-36
- Sohaib M, Butt MS, Shabbir MA, Shahid M. Lipid stability, antioxidant potential and fatty acid composition of broilers breast meat as influenced by quercetin in combination with α-tocopherol enriched diets. Lipids Health Dis 2015;14:61. https://doi.org/10.1186/s12944-015-0058-6
- Hager-Theodorides AL, Massouras T, Simitzis PE, et al. Hesperidin and naringin improve broiler meat fatty acid profile and modulate the expression of genes involved in fatty acid β-oxidation and antioxidant defense in a dose dependent manner. Foods 2021;10:739. https://doi.org/10.3390/foods10040739
- Wan X, Yang Z, Ji H, et al. Effects of lycopene on abdominal fat deposition, serum lipids levels and hepatic lipid metabolismrelated enzymes in broiler chickens. Anim Biosci 2021;34:385-92. https://doi.org/10.5713/ajas.20.0432
- Xie Z, Shen G, Wang Y, Wu C. Curcumin supplementation regulates lipid metabolism in broiler chickens. Poult Sci 2019;98:422-9. https://doi.org/10.3382/ps/pey315
- Uwineza PA, Waskiewicz A. Recent advances in supercritical fluid extraction of natural bioactive compounds from natural plant materials. Molecules 2020;25:3847. https://doi.org/10.3390/molecules25173847
- Lefebvre T, Destandau E, Lesellier E. Selective extraction of bioactive compounds from plants using recent extraction techniques: a review. J Chromatogr A 2021;1635:461770. https://doi.org/10.1016/j.chroma.2020.461770
- Lv Z, Xing K, Li G, Liu D, Guo Y. Dietary genistein alleviates lipid metabolism disorder and inflammatory response in laying hens with fatty liver syndrome. Front Physiol 2018;9:1493. https://doi.org/10.3389/fphys.2018.01493
- Stochmal A, Simonet AM, Macias FA, Oleszek W. Alfalfa (Medicago sativa L.) flavonoids. 2. tricin and chrysoeriol glycosides from aerial parts. J Agric Food Chem 200;49:5310-4. https://doi.org/10.1021/jf010600x
- Ouyang K, Xu M, Jiang Y, Wang W. Effects of alfalfa flavonoids on broiler performance, meat quality, and gene expression. Can J Anim Sci 2016;96:332-41. https://doi.org/10.1139/CJAS-2015-0132
- Graham HN. Green tea composition, consumption, and polyphenol chemistry. Prev Med 1992;21:334-50. https://doi.org/10.1016/0091-7435(92)90041-F
- Huang J, Zhang Y, Zhou Y, et al. Green tea polyphenols alleviate obesity in broiler chickens through the regulation of lipidmetabolism-related genes and transcription factor expression. J Agric Food Chem 2013;61:8565-72. https://doi.org/10.1021/jf402004x
- Shi J, Yu J, Pohorly JE, Kakuda Y. Polyphenolics in grape seeds-biochemistry and functionality. J Med Food 2003;6:291-9. https://doi.org/10.1089/109662003772519831
- Farahat MH, Abdallah FM, Ali HA, Hernandez-Santana A. Effect of dietary supplementation of grape seed extract on the growth performance, lipid profile, antioxidant status and immune response of broiler chickens. Animal 2017;11:771-7. https://doi.org/10.1017/S1751731116002251
- Gil MI, Tomas-Barberan FA, Hess-Pierce B, Holcroft DM, Kader AA. Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing. J Agric Food Chem 2000;48:4581-9. https://doi.org/10.1021/jf000404a
- Shen M, Xie Z, Jia M, et al. Effect of bamboo leaf extract on antioxidant status and cholesterol metabolism in broiler chickens. Animals 2019;9:699. https://doi.org/10.3390/ani9090699
- Shen MM, Zhang LL, Chen YN, et al. Effects of bamboo leaf extract on growth performance, meat quality, and meat oxidative stability in broiler chickens. Poult Sci 2019;98:6787-96. https://doi.org/10.3382/ps/pez404
- Shehzad A, Wahid F, Lee YS. Curcumin in cancer chemoprevention: molecular targets, pharmacokinetics, bioavailability, and clinical trials. Arch Pharm 2010;343:489-99. https://doi.org/10.1002/ardp.200900319
- Jia-li L, De-ming L, Dan W, Hong Z, Xin-rong D, Jian-hua T. Analyses of the contents of total flavonoids and hesperidin in citrus peel. Hunan Agric Sci 2020;11:58-62. https://doi.org/10.16498/j.cnki.hnnykx.2020.011.016
- Zuorro A, Fidaleo M, Lavecchia R. Enzyme-assisted lycopene extraction from tomato processing waste. Enzyme Microb Technol 2011;49:567-73. https://doi.org/10.1016/j.enzmictec.2011.04.020
- Yusong Z, Cangxue L. Exploitation of sea bucthorn resource and extraction of flavone. Food Res Dev 2005;3:46-7. https://doi.org/10.3969/j.issn.1005-6521.2005.03.016
- Ma JS, Chang WH, Liu GH, et al. Effects of flavones of sea buckthorn fruits on growth performance, carcass quality, fat deposition and lipometabolism for broilers. Poult Sci 2015;94:2641-9. https://doi.org/10.3382/ps/pev250
- Fernandez C, Lopez-Saez A, Gallego L, de la Fuente JM. Effect of source of betaine on growth performance and carcass traits in lambs. Anim Feed Sci Technol 2000;86:71-82. https://doi.org/10.1016/S0377-8401(00)00150-4
- Leng Z, Fu Q, Yang X, Ding L, Wen C, Zhou Y. Increased fatty acid β-oxidation as a possible mechanism for fat-reducing effect of betaine in broilers. Anim Sci J 2016;87:1005-10. https://doi.org/10.1111/asj.12524
- Ruiqi F, Guiping Z, Ranran L, Maiqing Z, Jilan C, Jie W. Research on body fat distribution and deposition pattern of beijing-you chickens. Chinese J Anim Nutr 2013;25:1465-72. https://doi.org/10.3969/j.issn.1006-267x
- Ghasemi HA, Shivazad M, Mirzapour Rezaei SS, Karimi Torshizi MA. Effect of synbiotic supplementation and dietary fat sources on broiler performance, serum lipids, muscle fatty acid profile and meat quality. Br Poult Sci 2016;57:71-6. https://doi.org/10.1080/00071668.2015.1098766
- Zhao GP, Cui HX, Liu RR, Zheng MQ, Chen JL, Wen J. Comparison of breast muscle meat quality in 2 broiler breeds. Poult Sci 2011;90:2355-9. https://doi.org/10.3382/ps.2011-01432
- Wiktorowska-Owczarek A, Berezinska M, Nowak JZ. PUFAs: structures, metabolism and functions. Adv Clin Exp Med 2015;24:931-41. https://doi.org/10.17219/acem/31243
- Ahmadipour B, Hassanpour H, Khajali F. Evaluation of hepatic lipogenesis and antioxidant status of broiler chickens fed mountain celery. BMC Vet Res 2018;14:234. https://doi.org/10.1186/s12917-018-1561-6
- Jiang ZY, Jiang SQ, Lin YC, Xi PB, Yu DQ, Wu TX. Effects of soybean isoflavone on growth performance, meat quality, and antioxidation in male broilers. Poult Sci 2007; 86:1356-62. https://doi.org/10.1093/ps/86.7.1356
- Kamboh AA, Zhu WY. Individual and combined effects of genistein and hesperidin supplementation on meat quality in meat-type broiler chickens. J Sci Food Agric 2013;93:3362-7. https://doi.org/10.1002/jsfa.6185
- Zhao JS, Deng W, Liu HW. Effects of chlorogenic acid-enriched extract from Eucommia ulmoides leaf on performance, meat quality, oxidative stability, and fatty acid profile of meat in heat-stressed broilers. Poult Sci 2019;98:3040-9. https://doi.org/10.3382/ps/pez081
- Lv Z, Fan H, Song B, Li G, Liu D, Guo Y. Supplementing genistein for breeder hens alters the fatty acid metabolism and growth performance of offsprings by epigenetic modification. Oxid Med Cell Longev 2019;2019:9214209. https://doi.org/10.1155/2019/9214209
- Oskoueian E, Ebrahimi M, Abdullah N, Rajion MA, Goh YM. Manipulation of broiler meat fatty acid composition using quercetin. 59th International Congress of Meat Science and Technology; 2013 August, 18-23; Izmir, Turkey.
- Kamboh AA, Zhu WY. Effect of increasing levels of bioflavonoids in broiler feed on plasma anti-oxidative potential, lipid metabolites, and fatty acid composition of meat. Poult Sci 2013;92:454-61. https://doi.org/10.3382/ps.2012-02584
- Galli GM, Gerbet RR, Griss LG, et al. Combination of herbal components (curcumin, carvacrol, thymol, cinnamaldehyde) in broiler chicken feed: Impacts on response parameters, performance, fatty acid profiles, meat quality and control of coccidia and bacteria. Microb Pathog 2020;139:103916. https://doi.org/10.1016/j.micpath.2019.103916
- Ahmed ST, Islam MM, Bostami ABMR, Mun HS, Kim YJ, Yang CJ. Meat composition, fatty acid profile and oxidative stability of meat from broilers supplemented with pomegranate (Punica granatum L.) by-products. Food Chem 2015;188:481-8. https://doi.org/10.1016/j.foodchem.2015.04.140
- Ahmed ST, Ko SY, Yang CJ. Improving the nutritional quality and shelf life of broiler meat by feeding diets supplemented with fermented pomegranate (Punica granatum L.) byproducts. Br Poult Sci 2017;58:694-703. https://doi.org/10.1080/00071668.2017.1363870
- Kersten S. Physiological regulation of lipoprotein lipase. Biochim Biophys Acta Mol Cell Biol Lipids 2014;1841:919-33. https://doi.org/10.1016/j.bbalip.2014.03.013
- Han W, Ze X, Xiong D, Li J, Li J, Zhao C. A mutation in the chicken lipoprotein lipase gene is associated with adipose traits. Anim Prod Sci 2012;52:905-10. https://doi.org/10.1071/AN12021
- Griffin HD, Butterwith SC, Goddard C. Contribution of lipoprotein lipase to differences in fatness between broiler and layer-strain chickens. Br Poult Sci 1987;28:197-206. https://doi.org/10.1080/00071668708416953
- Sato K, Akiba Y, Chida Y, Takahashi K. Lipoprotein hydrolysis and fat accumulation in chicken adipose tissues are reduced by chronic administration of lipoprotein lipase monoclonal antibodies. Poult Sci 1999;78:1286-91. https://doi.org/10.1093/ps/78.9.1286
- Abudilida S, Ting S, Xusheng WU, We J. Developmental Changes of A-FABP, H-FABP and PPAR-γ genes mRNA expression and its correlation with intramuscular fat content in baicheng you chicken. China Poult 2019;41:5-11. https://doi.org/10.16372/j.issn.1004-6364.2019.14.002
- Wang Y, Liu W, Hang C, et al. Association of A-FABP gene polymorphism and mRNA expression with intramuscular fat content (IMF) in Baicheng-You chicken. J Anim Physiol Anim Nutr 2019;103:1447-52. https://doi.org/10.1111/jpn.13150
- Wang Y, Chen H, Han D, et al. Correlation of the A-FABP gene polymorphism and mRNA expression with intramuscular fat content in three-yellow chicken and hetian-black chicken. Anim Biotechnol 2017;28:37-43. https://doi.org/10.1080/10495398.2016.1194288
- Fu RQ, Liu RR, Zhao GP, Zheng MQ, Chen JL, Wen J. Expression profiles of key transcription factors involved in lipid metabolism in Beijing-You chickens. Gene 2014;537:120-5. https://doi.org/10.1016/j.gene.2013.07.109
- Cui H, Zheng M, Zhao G, Liu R, Wen J. Identification of differentially expressed genes and pathways for intramuscular fat metabolism between breast and thigh tissues of chickens. BMC Genomics 2018;19:55. https://doi.org/10.1186/s12864-017-4292-3
- Hassan FAM, Roushdy EM, Kishawy ATY, Zaglool AW, Tukur HA, Saadeldin IM. Growth performance, antioxidant capacity, lipid-related transcript expression and the economics of broiler chickens fed different levels of rutin. Animals 2019;9:7. https://doi.org/10.3390/ani9010007
- Ouyang WW, Yao LI, Wei Z, Ming Hao W, Fang J. Effect of quercetin on cAMP signaling pathway in chicken adipocytes. Scientia Agricultura Sinica 2013;46:2769-76. https://doi.org/10.3864/j.issn.0578-1752.2013.13.014
- Wang M, Wang B, Wang S, et al. Effect of quercetin on lipids metabolism through modulating the gut microbial and AMPK/PPAR signaling pathway in broilers. Front Cell Dev Biol 2021;9:616219. https://doi.org/10.3389/fcell.2021.616219
- Wang M, Mao Y, Wang B, et al. Quercetin improving lipid metabolism by regulating lipid metabolism pathway of ileum mucosa in broilers. Oxid Med Cell Longev 2020;2020:8686248. https://doi.org/10.1155/2020/8686248
- Huang J, Zhou Y, Wan B, Wang Q, Wan X. Green tea polyphenols alter lipid metabolism in the livers of broiler chickens through increased phosphorylation of AMP-activated protein kinase. PLoS One 2017;12:e0187061. https://doi.org/10.1371/journal.pone.0187061
- Huang JB, Zhang Y, Zhou YB, Wan XC, Zhang JS. Effects of epigallocatechin gallate on lipid metabolism and its underlying molecular mechanism in broiler chickens. J Anim Physiol Anim Nutr 2015;99:719-27. https://doi.org/10.1111/jpn.12276
- Gou ZY, Cui XY, Li L, et al. Effects of dietary incorporation of linseed oil with soybean isoflavone on fatty acid profiles and lipid metabolism-related gene expression in breast muscle of chickens. Animal 2020;14:2414-22. https://doi.org/10.1017/S1751731120001020
- Ouyang K, Xiong X, Wang W, Hu Y, Zhou P, Liu D. Effects of alfalfa flavones on growth performance and carcass quality of female Chongren chickens. Acta Prataculturae Sinica 2013;22:340-5. https://doi.org/10.11686/cyxb20130440
- Cui TT, Xing TY, Chu YK, Li H, Wang N. Genetic and epigenetic regulation of PPARγ during adipogenesis. Hereditas 2017;39:1066-77. https://doi.org/10.16288/j.yczz.17-121
- Sun YN, Gao Y, Qiao SP, et al. Epigenetic DNA methylation in the promoters of peroxisome proliferator-activated receptor γ in chicken lines divergently selected for fatness. J Anim Sci 2014;92:48-53. https://doi.org/10.2527/jas.2013-6962
- Hu Y, Feng Y, Ding Z, et al. Maternal betaine supplementation decreases hepatic cholesterol deposition in chicken offspring with epigenetic modulation of SREBP2 and CYP7A1 genes. Poult Sci 2020;99:3111-20. https://doi.org/10.1016/j.psj.2019.12.058
- Mildner AM, Clarke SD. Porcine fatty acid synthase: cloning of a complementary DNA, tissue distribution of its mRNA and suppression of expression by somatotropin and dietary protein. J Nutr 1991;121:900-7. https://doi.org/10.1093/jn/121.6.900
- Zou XT, Lu JJ. Effect of betaine on the regulation of the lipid metabolism in laying hen. Scientia Agricultura Sinica 2002;3:325-330. https://doi.org/10.3321/j.issn:0578-1752.2002.03.018
- He S, Zhao S, Dai S, Liu D, Bokhari SG. Effects of dietary betaine on growth performance, fat deposition and serum lipids in broilers subjected to chronic heat stress. Anim Sci J 2015;86:897-903. https://doi.org/10.1111/asj.12372
- Xing J, Kang L, Jiang Y. Effect of dietary betaine supplementation on lipogenesis gene expression and CpG methylation of lipoprotein lipase gene in broilers. Mol Biol Rep 2011;38:1975-81. https://doi.org/10.1007/s11033-010-0319-4
- Hu Y, Sun Q, Li X, et al. In ovo injection of betaine affects hepatic cholesterol metabolism through epigenetic gene regulation in newly hatched chicks. PLoS One 2015;10:e0122643. https://doi.org/10.1371/journal.pone.0122643
- Cui X, Li Y, Liu R, et al. Follicle-stimulating hormone increases the intramuscular fat content and expression of lipid biosynthesis genes in chicken breast muscle. J Zhejiang Univ Sci B 2016;17:303-10. https://doi.org/10.1631/jzus.B1500139
- Cui X, Cui H, Liu L, et al. Decreased testosterone levels after caponization leads to abdominal fat deposition in chickens. BMC Genomics 2018;19:344. https://doi.org/10.1186/s12864-018-4737-3
- Huang HY, Zhao GP, Liu RR, et al. Brain natriuretic peptide stimulates lipid metabolism through its receptor npr1 and the glycerolipid metabolism pathway in chicken adipocytes. Biochemistry 2015;54:6622-30. https://doi.org/10.1021/acs.biochem.5b00714
- Kim DH, Lee J, Suh Y, Cressman M, Lee SS, Lee K. Adipogenic and myogenic potentials of chicken embryonic fibroblasts in vitro: combination of fatty acids and insulin induces adipogenesis. Lipids 2020;55:163-71. https://doi.org/10.1002/lipd.12220
- Yan J, Yang H, Gan L, Sun C. Adiponectin-impaired adipocyte differentiation negatively regulates fat deposition in chicken. J Anim Physiol Anim Nutr 2014;98:530-7. https://doi.org/10.1111/jpn.12107
- Jiang Z, Yang Z, Zhang H, Yao Y, Ma H. Genistein activated adenosine 5'-monophosphate-activated protein kinase-sirtuin1/peroxisome proliferator-activated receptor γ coactivator-1α pathway potentially through adiponectin and estrogen receptor β signaling to suppress fat deposition in broiler chickens. Poult Sci 2021;100:246-55. https://doi.org/10.1016/j.psj.2020.10.013
- Wang M, Liu Z, Wang H, Guan J, Hu Q, Wang X. Effects of glucocorticoid and dietary fat level on lipid metabolism of broilers. Chinese J Anim Nutr 2018;30:3772-80. https://doi.org/10.3969/j.issn.1006-267x.2018.09.049
- Abobaker H, Hu Y, Hou Z, et al. Dietary betaine supplementation increases adrenal expression of steroidogenic acute regulatory protein and yolk deposition of corticosterone in laying hens. Poult Sci 2017;96:4389-98. https://doi.org/10.3382/ps/pex241
- 78.Omer NA, Hu Y, Idriss AA, et al. Dietary betaine improves egg-laying rate in hens through hypomethylation and glucocorticoid receptor-mediated activation of hepatic lipogenesisrelated genes. Poult Sci 2020;99:3121-32. https://doi.org/10.1016/j.psj.2020.01.017
- Zhou Y, Chen Z, Lin Q, et al. Nuciferine reduced fat deposition by controlling triglyceride and cholesterol concentration in broiler chickens. Poult Sci 2020;99:7101-8. https://doi.org/10.1016/j.psj.2020.09.013
- Xiao Y, Xiang Y, Zhou W, Chen J, Li K, Yang H. Microbial community mapping in intestinal tract of broiler chicken. Poult Sci 2017;96:1387. https://doi.org/10.3382/ps/pew372
- Venardou B, O'Doherty JV, Vigors S, et al. Effects of dietary supplementation with a laminarin-rich extract on the growth performance and gastrointestinal health in broilers. Poult Sci 2021;100:101179. https://doi.org/10.1016/j.psj.2021.101179
- Long LN, Zhang HH, Wang F, Yin YX, Yang LY, Chen JS. Research Note: Effects of polysaccharide-enriched Acanthopanax senticosus extract on growth performance, immune function, antioxidation, and ileal microbial populations in broiler chickens. Poult Sci 2021;100:101028. https://doi.org/10.1016/j.psj.2021.101028
- Yesilbag D, Eren M, Agel H, Kovanlikaya A, Balci F. Effects of dietary rosemary, rosemary volatile oil and vitamin E on broiler performance, meat quality and serum SOD activity. Br Poult Sci 2011;52:472-82. https://doi.org/10.1080/00071668.2011.599026
- Wen C, Yan W, Sun C, et al. The gut microbiota is largely independent of host genetics in regulating fat deposition in chickens. ISME J 2019;13:1422-36. https://doi.org/10.1038/s41396-019-0367-2
- Indiani C, Rizzardi KF, Castelo PM, Ferraz L, Darrieux M, Parisotto TM. Childhood obesity and firmicutes/bacteroidetes ratio in the gut microbiota: a systematic review. Child Obes 2018;14:501-9. https://doi.org/10.1089/chi.2018.0040
- Zhao X, Guo Y, Guo S, Tan J. Effects of Clostridium butyricum and Enterococcus faecium on growth performance, lipid metabolism, and cecal microbiota of broiler chickens. Appl Microbiol Biotechnol 2013;97:6477-88. https://doi.org/10.1007/s00253-013-4970-2
- Zhao X, Ding X, Yang Z, Shen Y, Zhang S, Shi S. Effects of Clostridium butyricum on breast muscle lipid metabolism of broilers. Ital J Anim Sci 2018;17:1010-20. https://doi.org/10.1080/1828051X.2018.1453758
- Gheorghe A, Lefter NA, Idriceanu L, Ropota M, Habeanu M. Effects of dietary extruded linseed and Lactobacillus acidophilus on growth performance, carcass traits, plasma lipoprotein response, and caecal bacterial populations in broiler chicks. Ital J Anim Sci 2020;19:822-32. https://doi.org/10.1080/1828051X.2020.1801359
- Zhang J, Sun Y, Zhao L, et al. SCFAs-Induced GLP-1 secretion links the regulation of gut microbiome on hepatic lipogenesis in chickens. Front Microbiol 2019;10:2176. https://doi.org/10.3389/fmicb.2019.02176
- Lin HV, Frassetto A, Kowalik EJ Jr, et al. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS One 2012;7:e35240. https://doi.org/10.1371/journal.pone.0035240
- Li H, Zhao L, Liu S, Zhang Z, Wang X, Lin H. Propionate inhibits fat deposition via affecting feed intake and modulating gut microbiota in broilers. Poult Sci 2021;100:235-45. https://doi.org/10.1016/j.psj.2020.10.009
- Zhao L, Liu S, Zhang Z, et al. Low and high concentrations of butyrate regulate fat accumulation in chicken adipocytes via different mechanisms. Adipocyte 2020;9:120-31. https://doi.org/10.1080/21623945.2020.1738791
- Wang J, Chen Y, Hu X, Feng F, Cai L, Chen F. Assessing the effects of ginger extract on polyphenol profiles and the subsequent impact on the fecal microbiota by simulating digestion and fermentation in vitro. Nutrients 2020;12:3194. https://doi.org/10.3390/nu12103194
- Chai M, Guo Y, Li Y, Peng Y, Wang Y. Effects of Macleaya cordata extracts instead of antibiotics on growth performance, caecum microbes and tight junction gene expression of yellowfeathered broilers. Acta Microbiologica Sinica 2020;60:1718-28. https://doi.org/10.13343/j.cnki.wsxb.20190531
- Chen X, Zhu W, Liu X, Li T, Geng Z, Wan X. The growth performance, meat quality, and gut bacteria of broilers raised with or without antibiotics and green tea powder. J Appl Poult Res 2019;28:712-21. https://doi.org/10.3382/japr/pfz023
- Li W, Zhang X, He Z, et al. In vitro and in vivo antioxidant activity of eucalyptus leaf polyphenols extract and its effect on chicken meat quality and cecum microbiota. Food Res Int 2020;136:109302. https://doi.org/10.1016/j.foodres.2020.109302