Acknowledgement
This study was supported by the MAFRA and IPET's support for industrialization technology development to respond to current livestock issues (Project NO. 321091-03).
References
- Park M, Kim N, Lee S, Yeon S, Seo JH, Park D. A study of solubilization of sewage sludge by hydrothermal treatment. J Environ Manag 2019;250:109490. https://doi.org/10.1016/j.jenvman.2019.109490
- Carlsson M, Lagerkvist A, Morgan-Sagastume F. The effects of substrate pre-treatment on anaerobic digestion systems: a review. Waste Manag 2012;32:1634-50. https://doi.org/10.1016/j.wasman.2012.04.016
- Bougrier C, Delgenes JP, Carrere H. Effects of thermal treatments on five different waste activated sludge samples solubilisation, physical properties and anaerobic digestion. Chem Eng J 2008;139:236-44. https://doi.org/10.1016/j.cej.2007.07.099
- Cao Z, Jung D, Olszewski MP, Arauzo PJ, Kruse A. Hydrothermal carbonization of biogas digestate: Effect of digestate origin and process conditions. Waste Manag 2019;100:13850. https://doi.org/10.1016/j.wasman.2019.09.009
- Wirth B, Eberhardt G, Lotze-Campen H, et al. Hydrothermal carbonization: influence of plant capacity, feedstock choice and location on product cost. Proceedings of 19th European Biomass Conference & Exhibition; 2011 Jun 6-10; Berlin, Germany.
- Ferrer I, Ponsa S, Vazquez F, Font X. Increasing biogas production by thermal (70℃) sludge pre-treatment prior to thermophilic anaerobic digestion. Biochem Eng J 2008;42:186-92. https://doi.org/10.1016/j.bej.2008.06.020
- Oh SY, Kim CH, Yoon YM. The bioenergy conversion characteristics of feedlot manure discharging from beef cattle barn. Korean J Soil Sci Fert 2015;48:697-704. https://doi.org/10.7745/KJSSF.2015.48.6.697
- Ramke HG, Blohse D, Lehmann HJ, Fettig J. Hydrothermal carbonization of organic waste. In: Cossu R, Diaz LF, Stegman R, editors. Twelfth International Waste Management and Landfill Symphosium; Sardina, Italy: CISA pub; 2009.
- Ahring BK, Ibrahim AA, Mladenovska Z. Effect of temperature increase from 55 to 65 degrees C on performance and microbial population dynamics of an anaerobic reactor treating cattle manure. Water Res 2001;35:2446-52. https://doi.org/10.1016/S0043-1354(00)00526-1
- Marin-Batista J, Villamil J, Qaramaleki S, Coronella C, Mohedano A, de La Rubia M. Energy valorization of cow manure by hydrothermal carbonization and anaerobic digestion. Renew Energy 2020;160:623-32. https://doi.org/10.1016/j.renene.2020.07.003
- Omar R, Harun RM, Mohd Ghazi T, et al. Anaerobic treatment of cattle manure for biogas production. In: Proceedings Philadelphia, Annual Meeting of American Institute of Chemical Engineers; 2008.
- Boyle W. Energy recovery from sanitary landfills-a review. In: Schlegel HG, Barnea J, editors. Microbial energy conversion; Frankfurt, Germany: Pergamon Press; 1977. pp. 119-38. https://doi.org/10.1016/B978-0-08-021791-8.50019-6
- Angelidaki I, Alves M, Bolzonella D, et al. Defining the bio-methane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Sci Technol 2009;59:927-34. https://doi.org/10.2166/wst.2009.040
- Lay JJ, Li YY, Noike T. Mathematical model for methane production from landfill bioreactor. J Environ Eng 1998;124:730-6. https://doi.org/10.1061/(ASCE)0733-9372(1998)124:8(730)
- Luna-deRisco M, Normak A, Orupold K. Biochemical methane potential of different organic wastes and energy crops from Estonia. Agron Res 2011;9(1-2):331-42.
- Rice E, Baird R, Eaton A, Clesceri L. APHA (American Public Health Association): Standard method for the examination of water and wastewater. Washington DC, USA: American Water Works Association and Water Environment Federation; 2012.
- Sorensen AH, Winther-Nielsen M, Ahring BK. Kinetics of lactate, acetate and propionate in unadapted and lactate-adapted thermophilic, anaerobic sewage sludge: the influence of sludge adaptation for start-up of thermophilic UASB-reactors. Appl Microbiol Biotechnol 1991;34:823-7. https;//doi.org/10.1007/bf00169358
- ArdIc I, Taner F. Effects of thermal, chemical and thermochemical pretreatments to increase biogas production yield of chicken manure. Fresenius Environ Bull 2005;14:373-80.
- Mladenovska Z, Hartmann H, Kvist T, Sales-Cruz M, Gani R, Ahring BK. Thermal pretreatment of the solid fraction of manure: impact on the biogas reactor performance and microbial community. Water Sci Technol 2006;53:59-67. https://doi.org/10.2166/wst.2006.236
- Yoneyama N, Morimoto H, Ye CX, Ashihara H, Mizuno K, Kato M. Substrate specificity of N-methyltransferase involved in purine alkaloids synthesis is dependent upon one amino acid residue of the enzyme. Mol Genet Genomics. 2006;275:125-35. https://doi.org/10.1007/s00438-005-0070-z
- Kim H, Jeon YW. Effects of hydro-thermal reaction temperature on anaerobic biodegradability of piggery manure hydrolysate. Korean J Soil Sci Fert 2015;48:602-9. https://doi.org/10.7745/KJSSF.2015.48.6.602
- Wang L, Chang Y, Li A. Hydrothermal carbonization for energy-efficient processing of sewage sludge: a review. Renew Sustain Energy Rev 2019;108:423-40. https://doi.org/10.1016/j.rser.2019.04.011
- Funke A, Ziegler F. Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering. Biofuel Bioprod Biorefin 2010;4:16077. https://doi.org/10.1002/bbb.198
- Libra JA, Ro KS, Kammann C, et al. Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels 2011;2:71-106. https://doi.org/10.4155/bfs.10.81
- Kim SH, Kim H, Kim CH, et al. Effect of the pretreatment by thermal hydrolysis on biochemical methane potential of piggery sludge. Korean J Soil Sci Fert 2012;45:524-31. https://doi.org/10.7745/KJSSF.2012.45.4.524
- Gossett RW, Brown DA, Young DR. Predicting the bioaccumulation and toxicity of organic compounds. Coastal Water Research Project Biennial Report 1981;1982:149-56.
- Gao Y, Liu Y, Zhu G, et al. Microwave-assisted hydrothermal carbonization of dairy manure: Chemical and structural properties of the products. Energy 2018;165:662-72. https://doi.org/10.1016/j.energy.2018.09.185
- Jain S, Sharma M. Power generation from MSW of Haridwar city: a feasibility study. Renew Sustain Energy Rev 2011;15:69-90. https://doi.org/10.1016/j.rser.2010.09.007
- Oh SY, Yoon YM. Energy recovery efficiency of poultry slaughterhouse sludge cake by hydrothermal carbonization. Energies 2017;10:1876. https://doi.org/10.3390/en10111876
- Martins SI, Jongen WM, Van Boekel MA. A review of Maillard reaction in food and implications to kinetic modelling. Trends Food Sci Technol 2000;11(9-10):364-73. https://doi.org/10.1016/S0924-2244(01)00022-X