과제정보
본 논문은 교육부 및 한국연구재단 4단계 두뇌한국21 사업(4단계 BK21 사업)으로부터 지원받은 연구임.
참고문헌
- 김동언, 김민지, 김재경, "소규모 전자상거래를 위한 추천 시스템의 시간 차이에 따른 추천 효과 측정에 관한 연구", 인터넷전자상거래연구, 제22권, 제6호, 2022, 185-202. https://doi.org/10.37272/JIECR.2022.12.22.6.185
- 김재경, 오희영, 권오병, "유비쿼터스 환경에서 연관규칙과 협업필터링을 이용한 상품그룹추천", 한국 IT서비스학회지, 제6권, 제2호, 2007, 113-123.
- 권혁인, 나윤빈, 유미옥, 최광선, "도서정보 기반의 고객 맞춤형 큐레이션 서비스 및 비즈니스 모델 연구", 한국IT서비스학회지, 제14권, 제1호, 2015, 251-262. https://doi.org/10.9716/KITS.2015.14.1.251
- 이청용, 전상홍, 이창재, 김재경, "사용자의 선호도 정보를 활용한 직무 추천 시스템 연구", 한국IT서비스학회지, 제20권, 제3호, 2021, 57-73. https://doi.org/10.9716/KITS.2021.20.3.057
- 이흠철, 윤효림, 이청용, 김재경, "Multi-channel CNN 기반 온라인 리뷰 유용성 예측 모델 개발에 관한 연구", 지능정보연구, 제28권, 제2호, 2022, 171-189. https://doi.org/10.13088/JIIS.2022.28.2.171
- 홍태호, 홍준우, 김은미, 김민수, "영화 리뷰의 상품 속성과 고객 속성을 통합한 지능형 추천시스템", 지능정보연구, 제28권, 제2호, 2022, 1-18. https://doi.org/10.13088/JIIS.2022.28.2.001
- Abdollahpouri, H., G. Adomavicius, R. Burke, I. Guy, D. Jannach, T. Kamishima, J. Krasnodebski, and L. Pizzato, "Multistakeholder recommendation: Survey and research directions", User Modeling and User-Adapted Interaction, Vol.30, No.1, 2020, 127-158. https://doi.org/10.1007/s11257-019-09256-1
- Al-Bakri, N.F. and S.H. Hashim, "Reducing data sparsity in recommender systems", Al-Nahrain Journal of Science, Vol.21, No.2, 2018, 138-147. https://doi.org/10.22401/JNUS.21.2.20
- Bennett, J. and S. Lanning, "The netflix prize", Proceedings of KDD Cup and Workshop 2007, San Jose, USA, 2007, 35-38.
- Berg, R.V.D., T.N. Kipf, and M. Welling, "Graph convolutional matrix completion", arXiv preprint arXiv:1706.02263, 2017.
- Chen, S. and Y. Peng, "Matrix factorization for recommendation with explicit and implicit feedback", Knowledge-Based Systems, Vol.158, 2018, 109-117. https://doi.org/10.1016/j.knosys.2018.05.040
- Das, A.S., M. Datar, A. Garg, and S. Rajaram, "Google news personalization: scalable online collaborative filtering", Proceedings of the 16th International Conference on World Wide Web, Banff, Canada, 2007, 271-280.
- Dogan, O., F.C. Kem, and B. Oztaysi, "Fuzzy association rule mining approach to identify e-commerce product association considering sales amount", Complex & Intelligent Systems, Vol.8, No.2, 2022, 1551-1560. https://doi.org/10.1007/s40747-021-00607-3
- Goldberg, D., D. Nichols, B.M. Oki, and D. Terry, "Using collaborative filtering to weave an information tapestry", Communications of the ACM, Vol.35, No.12, 1992, 61-70. https://doi.org/10.1145/138859.138867
- Harper, F.M. and J.A. Konstan, "The movielens datasets: History and context", ACM Transactions on Interactive Intelligent Systems, Vol.5, No.4, 2015, 1-19. https://doi.org/10.1145/2827872
- He, X., K. Deng, X. Wang, Y. Li, Y. Zhang, and M. Wang, "Lightgcn: Simplifying and powering graph convolution network for recommendation", Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, Xi'an, China, 2020, 639-648.
- He, X., L. Liao, H. Zhang, L. Nie, X. Hu, and T.S. Chua, "Neural collaborative filtering", Proceedings of the 26th International Conference on World Wide Web, Perth, Australia, 2017, 173-182.
- Huang, T., Y. Dong, M. Ding, Z. Yang, W. Feng, X. Wang, and J. Tang, "Mixgcf: An improved training method for graph neural network-based recommender systems", Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, Singapore, 2021, 665-674.
- Idrissi, N. and A. Zellou, "A systematic literature review of sparsity issues in recommender systems", Social Network Analysis and Mining, Vol.10, No.1, 2020, 1-23. https://doi.org/10.1007/s13278-019-0612-8
- Kim, J.K., H.K. Kim, H.Y. Oh, and Y.U. Ryu, "A group recommendation system for online communities", International Journal of Information Management, Vol.30, No.3, 2010, 212-219. https://doi.org/10.1016/j.ijinfomgt.2009.09.006
- Kipf, T.N. and M. Welling, "Semi-supervised classification with graph convolutional networks", arXiv preprint arXiv:1609.02907, 2016.
- Koren, Y., "Factorization meets the neighborhood: a multifaceted collaborative filtering model", Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Las Vegas, USA, 2008, 426-434.
- Koren, Y., R. Bell, and C. Volinsky, "Matrix factorization techniques for recommender systems", Computer, Vol.42, No.8, 2009, 30-37. https://doi.org/10.1109/MC.2009.263
- Lee, D. and K. Hosanagar, "How do recommender systems affect sales diversity? A cross-category investigation via randomized field experiment", Information Systems Research, Vol.30, No.1, 2019, 239-259. https://doi.org/10.1287/isre.2018.0800
- Lima, G.R., C.E. Mello, A. Lyra, and G. Zimbrao, "Applying landmarks to enhance memorybased collaborative filtering", Information Sciences, Vol.513, 2020, 412-428. https://doi.org/10.1016/j.ins.2019.10.041
- Nilashi, M., O. Ibrahim, and K. Bagherifard, "A recommender system based on collaborative filtering using ontology and dimensionality reduction techniques", Expert Systems with Applications, Vol.92, 2018, 507-520. https://doi.org/10.1016/j.eswa.2017.09.058
- Park, S. and J.L. Nicolau, "Asymmetric effects of online consumer reviews", Annals of Tourism Research, Vol.50, 2015, 67-83. https://doi.org/10.1016/j.annals.2014.10.007
- Rendle, S., C. Freudenthaler, Z. Gantner, and L.S. Thieme, "BPR: Bayesian personalized ranking from implicit feedback", arXiv preprint arXiv:1205.2618, 2012.
- Renjith, S., A. Sreekumar, and M. Jathavedan, "An extensive study on the evolution of context-aware personalized travel recommender systems", Information Processing & Management, Vol.57, No.1, 2020, 102078.
- Resnick, P., N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl, "Grouplens: An open architecture for collaborative filtering of netnews", Proceedings of the 1994 ACM Conference on Computer Supported Cooperative Work, Chapel Hill, USA, 1994, 175-186.
- Sarwar, B., G. Karypis, J. Konstan, and J. Riedl, "Item-based collaborative filtering recommendation algorithms", Proceedings of the 10th International Conference on World Wide Web, Hong Kong, 2001, 285-295.
- Schafer, J.B., D. Frankowski, J. Herlocker, and S. Sen, "Collaborative filtering recommender systems", The Adaptive Web, Springer, New York, 2007.
- Singh, M., "Scalability and sparsity issues in recommender datasets: A survey", Knowledge and Information Systems, Vol.62, No.1, 2020, 1-43. https://doi.org/10.1007/s10115-018-1254-2
- Su, X. and T.M. Khoshgoftaar, "A survey of collaborative filtering techniques", Advances in Artificial Intelligence, Vol.2009, No.4, 2009, 1-19.
- Tang, H., W. Yang, and S. Zheng, "Intelligent information recommendation algorithm under background of big data land cultivation", Microprocessors and Microsystems, Vol.81, 2021, 103728.
- Tay, Y., L.A. Tuan, and S.C. Hui, "Latent relational metric learning via memory-based attention for collaborative ranking", Proceedings of the 2018 World Wide Web Conference, Lyon, France, 2018, 729-739.
- Wang, H., N. Wang, and D.Y. Yeung, "Collaborative deep learning for recommender systems", Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Sydney, Australia, 2015, 1235-1244.
- Wang, X., X. He, M. Wang, F. Feng, and T.S. Chua, "Neural graph collaborative filtering", Proceedings of the 42nd international ACM SIGIR Conference on Research and Development in Information Retrieval, Paris, France, 2019, 165-174.
- Xue, H.J., X. Dai, J. Zhang, S. Huang, and J. Chen, "Deep matrix factorization models for recommender systems", Proceedings of the 26th International Joint Conference on Artificial Intelligence, Melbourne, Australia, 2017, 3203-3209.
- Yao, Q., X. Chen, J.T. Kwok, Y. Li, and C.J. Hsieh, "Efficient neural interaction function search for collaborative filtering", Proceedings of The Web Conference 2020, Taipei, Taiwan, 2020, 1660-1670.
- Ying, R., R. He, K. Chen, P. Eksombatchai, W.L. Hamilton, and J. Leskovec, "Graph convolutional neural networks for web-scale recommender systems", Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK, 2018, 974-983.
- Yue, W., Z. Wang, W. Liu, B. Tian, S. Lauria, and X. Liu, "An optimally weighted user-and item-based collaborative filtering approach to predicting baseline data for Friedreich's Ataxia patients", Neurocomputing, Vol.419, 2021, 287-294. https://doi.org/10.1016/j.neucom.2020.08.031
- Zou, L., L. Xia, Y. Gu, X. Zhao, W. Liu, J.X. Huang and D. Yin, "Neural interactive collaborative filtering", Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, Xi'an, China, 2020, 749-758.