DOI QR코드

DOI QR Code

Correlation Analysis between Fat Fraction and Bone Mineral Density Using the DIXON Method for Fat Dominant Tissue in Knee Joint MRI: A Preliminary Study

지방우세 딕슨기법을 이용한 슬관절 자기공명영상 지방신호분율과 골밀도 간의 상관관계 분석: 예비 연구

  • Sung Hyun An (Department of Radiology, Ajou University School of Medicine) ;
  • Kyu-Sung Kwack (Department of Radiology, Ajou University School of Medicine) ;
  • Sunghoon Park (Department of Radiology, Ajou University School of Medicine) ;
  • Jae Sung Yun (Department of Radiology, Ajou University School of Medicine) ;
  • Bumhee Park (Department of Biomedical Informatics, Ajou University School of Medicine) ;
  • Ji Su Kim (Office of Biostatistics, Medical Research Collaborating Center, Ajou Research Institute for innovative Medicine, Ajou University Medical Center)
  • 안성현 (아주대학교 의과대학 영상의학교실) ;
  • 곽규성 (아주대학교 의과대학 영상의학교실) ;
  • 박성훈 (아주대학교 의과대학 영상의학교실) ;
  • 윤재성 (아주대학교 의과대학 영상의학교실) ;
  • 박범희 (아주대학교 의과대학 의료정보학교실) ;
  • 김지수 (아주대학교의료원 의학연구협력센터 의학통계실)
  • Received : 2022.03.30
  • Accepted : 2022.08.18
  • Published : 2023.03.01

Abstract

Purpose This study aimed to investigate the correlation between the fat signal fraction (FF) of the fat-dominant bone tissue of the knee joint, measured using the MRI Dixon method (DIXON) technique, and bone mineral density (BMD). Materials and Methods Among the patients who underwent knee DIXON imaging at our institute, we retrospectively analyzed 93 patients who also underwent dual energy X-ray absorptiometry within 1 year. The FFs of the distal femur metaphyseal (Fm) and proximal tibia metaphyseal (Tm) were calculated from the DIXON images, and the correlation between FF and BMD was analyzed. Patients were grouped based on BMD of lumbar spine (L), femoral neck (FN), and common femur (FT) respectively, and the Kruskal-Wallis H test was performed for FF. Results We identified a significant negative correlation between TmFF and FN-BMD in the entire patient group (r = -0.26, p < 0.05). In female patients, TmFF showed a negative correlation with FN-BMD, FT-BMD, and L-BMD (r = -0.38, 0.28 and -0.27, p < 0.05). In male patients, FmFF was negatively correlated with only FN-BMD and FT-BMD (r = -0.58 and -0.42, p < 0.05). There was a significant difference in the TmFF between female patients grouped by BMD (p < 0.05). In male patients, there was a significant difference in FmFF (p < 0.05). Conclusion Overall, we found that FF and BMD around the knee joints showed a negative correlation. This suggests the potential of FF measurement using DIXON for BMD screening.

목적 MRI Dixon method (이하 DIXON) 기법을 이용하여 슬관절 지방우세 골조직의 지방신호분율(fat signal fraction; 이하 FF)을 구하고 골밀도(bone mineral density; 이하 BMD)와 상관관계 분석을 시행하였다. 대상과 방법 본원 슬관절 DIXON 영상을 촬영한 환자들 중 일 년 이내의 dual energy X-ray absorptiometry가 있는 환자 93명을 후향적으로 분석하였다. DIXON 영상에서 원위부 대퇴골 골간단(femur metaphyseal; 이하 Fm)과 근위부 경골 골간단(tibia metaphyseal; 이하 Tm)의 FF를 계산하였다. FF와 BMD 간 상관관계를 분석하였다. 또, 요추(lumbar spine; 이하 L), 대퇴경부(femoral neck; 이하 FN), 총대퇴골(femur total; 이하 FT)의 BMD 별로 나누고 FF에 대하여 Kruskal-Wallis H test를 시행하였다. 결과 전체 환자군에서 TmFF와 FN-BMD 사이에 유의미한 음의 상관관계를 보였다(r = -0.26, p < 0.05). 여성 환자에서는 TmFF가 FN-BMD, FT-BMD 및 L-BMD와 음의 상관관계를 보였다(r = -0.38, -0.28과 -0.27, p < 0.05). 남성 환자에서는 FmFF가 FN-BMD 및 FT-BMD와 음의 상관관계를 보였다(r = -0.58과 r = -0.42, p < 0.05). 여성 환자들을 세 군으로 나누었을 때 TmFF에 유의한 차이를 보였다(p < 0.05). 남성 환자들을 두 군으로 나누었을 때, FmFF이 군간에 유의미한 차이를 보였다(p < 0.05). 결론 슬관절 주변의 FF와 BMD는 음의 상관관계를 보였으며, DIXON을 이용한 FF 측정이 BMD 스크리닝에 사용될 수 있는 가능성을 보였다.

Keywords

References

  1. Sepriano A, Roman-Blas JA, Little RD, Pimentel-Santos F, Arribas JM, Largo R, et al. DXA in the assessment of subchondral bone mineral density in knee osteoarthritis--A semi-standardized protocol after systematic review. Semin Arthritis Rheum 2015;45:275-283  https://doi.org/10.1016/j.semarthrit.2015.06.012
  2. Choi ES, Shin HD, Sim JA, Na YG, Choi WJ, Shin DD, et al. Relationship of bone mineral density and knee osteoarthritis (Kellgren-lawrence grade): fifth Korea national health and nutrition examination survey. Clin Orthop Surg 2021;13:60-66  https://doi.org/10.4055/cios20111
  3. Im GI, Kwon OJ, Kim CH. The relationship between osteoarthritis of the knee and bone mineral density of proximal femur: a cross-sectional study from a Korean population in women. Clin Orthop Surg 2014;6:420-425  https://doi.org/10.4055/cios.2014.6.4.420
  4. Kanis JA, Cooper C, Rizzoli R, Reginster JY; Scientific Advisory Board of the European Society for Clinical and Economic Aspects of Osteoporosis (ESCEO) and the Committees of Scientific Advisors and National Societies of the International Osteoporosis Foundation (IOF). European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int 2019;30:3-44  https://doi.org/10.1007/s00198-018-4704-5
  5. Ji MX, Yu Q. Primary osteoporosis in postmenopausal women. Chronic Dis Transl Med 2015;1:9-13  https://doi.org/10.1016/j.cdtm.2015.02.006
  6. Sozen T, OzI,sIk L, Ba,saran NC. An overview and management of osteoporosis. Eur J Rheumatol 2016;4:46-56  https://doi.org/10.5152/eurjrheum.2016.048
  7. Akamatsu Y, Mitsugi N, Hayashi T, Kobayashi H, Saito T. Low bone mineral density is associated with the onset of spontaneous osteonecrosis of the knee. Acta Orthop 2012;83:249-255  https://doi.org/10.3109/17453674.2012.684139
  8. Holland JC, Brennan O, Kennedy OD, Rackard S, O'Brien FJ, Lee TC. Subchondral osteopenia and accelerated bone remodelling post-ovariectomy - a possible mechanism for subchondral microfractures in the aetiology of spontaneous osteonecrosis of the knee? J Anat 2013;222:231-238  https://doi.org/10.1111/joa.12007
  9. Sayyid S, Younan Y, Sharma G, Singer A, Morrison W, Zoga A, et al. Subchondral insufficiency fracture of the knee: grading, risk factors, and outcome. Skeletal Radiol 2019;48:1961-1974  https://doi.org/10.1007/s00256-019-03245-6
  10. Hupfeld S, Pischel D, Jechorek D, Janicova A, Pech M, Fischbach F. MRI-based fat quantification of the liver: is it time for commercially available products? Eur J Radiol 2021;144:109993 
  11. Borga M, Ahlgren A, Romu T, Widholm P, Dahlqvist Leinhard O, West J. Reproducibility and repeatability of MRI-based body composition analysis. Magn Reson Med 2020;84:3146-3156  https://doi.org/10.1002/mrm.28360
  12. Levenson H, Greensite F, Hoefs J, Friloux L, Applegate G, Silva E, et al. Fatty infiltration of the liver: quantification with phase-contrast MR imaging at 1.5 T vs biopsy. AJR Am J Roentgenol 1991;156:307-312  https://doi.org/10.2214/ajr.156.2.1898804
  13. Chang JS, Taouli B, Salibi N, Hecht EM, Chin DG, Lee VS. Opposed-phase MRI for fat quantification in fat-water phantoms with 1H MR spectroscopy to resolve ambiguity of fat or water dominance. AJR Am J Roentgenol 2006;187:W103-W106  https://doi.org/10.2214/AJR.05.0695
  14. Johnson LA, Hoppel BE, Gerard EL, Miller SP, Doppelt SH, Zirzow GC, et al. Quantitative chemical shift imaging of vertebral bone marrow in patients with Gaucher disease. Radiology 1992;182:451-455  https://doi.org/10.1148/radiology.182.2.1732964
  15. Baur-Melnyk A, Geith T. Measurements in musculoskeletal radiology. 1st ed. Berlin: Springer 2019:809-822 
  16. Haak D, Page CE, Deserno TM. A survey of DICOM viewer software to integrate clinical research and medical imaging. J Digit Imaging 2015;29:206-215  https://doi.org/10.1007/s10278-015-9833-1
  17. Dixon WT. Simple proton spectroscopic imaging. Radiology 1984;153:189-194  https://doi.org/10.1148/radiology.153.1.6089263
  18. Fishbein MH, Gardner KG, Potter CJ, Schmalbrock P, Smith MA. Introduction of fast MR imaging in the assessment of hepatic steatosis. Magn Reson Imaging 1997;15:287-293  https://doi.org/10.1016/S0730-725X(96)00224-X
  19. Kim D, Kim SK, Lee SJ, Choo HJ, Park JW, Kim KY. Simultaneous estimation of the fat fraction and R2* via T2*-corrected 6-echo dixon volumetric interpolated breath-hold examination imaging for osteopenia and osteoporosis detection: correlations with sex, age, and menopause. Korean J Radiol 2019;20:916-930  https://doi.org/10.3348/kjr.2018.0032
  20. Gassert FT, Kufner A, Gassert FG, Leonhardt Y, Kronthaler S, Schwaiger BJ, et al. MR-based proton density fat fraction (PDFF) of the vertebral bone marrow differentiates between patients with and without osteoporotic vertebral fractures. Osteoporos Int 2022;33:487-496  https://doi.org/10.1007/s00198-021-06147-3
  21. Chang R, Ma X, Jiang Y, Huang D, Chen X, Zhang M, et al. Percentage fat fraction in magnetic resonance imaging: upgrading the osteoporosis-detecting parameter. BMC Med Imaging 2020;20:30 
  22. Wehrli FW, Hopkins JA, Hwang SN, Song HK, Snyder PJ, Haddad JG. Cross-sectional study of osteopenia with quantitative MR imaging and bone densitometry. Radiology 2000;217:527-538  https://doi.org/10.1148/radiology.217.2.r00nv20527
  23. Zheng X, Qi Y, Zhou H, Kang H, Tong Y, Bi L. Bone mineral density at the distal femur and proximal tibia and related factors during the first year of spinal cord injury. Int J Gen Med 2021;14:1121-1129  https://doi.org/10.2147/IJGM.S297660
  24. Gondim Teixeira PA, Cherubin T, Badr S, Bedri A, Gillet R, Albuisson E, et al. Proximal femur fat fraction variation in healthy subjects using chemical shift-encoding based MRI. Sci Rep 2019;9:20212 
  25. Martel D, Leporq B, Bruno M, Regatte RR, Honig S, Chang G. Chemical shift-encoded MRI for assessment of bone marrow adipose tissue fat composition: pilot study in premenopausal versus postmenopausal women. Magn Reson Imaging 2018;53:148-155  https://doi.org/10.1016/j.mri.2018.07.001
  26. Mirowitz SA. Motion artifact as a pitfall in diagnosis of meniscal tear on gradient reoriented MRI of the knee. J Comput Assist Tomogr 1994;18:279-282  https://doi.org/10.1097/00004728-199403000-00022
  27. Lavdas E, Mavroidis P, Hatzigeorgiou V, Roka V, Arikidis N, Oikonomou G, et al. Elimination of motion and pulsation artifacts using BLADE sequences in knee MR imaging. Magn Reson Imaging 2012;30:1099-1110  https://doi.org/10.1016/j.mri.2012.04.001
  28. Garg MK, Kharb S. Dual energy X-ray absorptiometry: pitfalls in measurement and interpretation of bone mineral density. Indian J Endocrinol Metab 2013;17:203-210  https://doi.org/10.4103/2230-8210.109659
  29. Lewiecki EM, Lane NE. Common mistakes in the clinical use of bone mineral density testing. Nat Clin Pract Rheumatol 2008;4:667-674  https://doi.org/10.1038/ncprheum0928
  30. Liu G, Peacock M, Eilam O, Dorulla G, Braunstein E, Johnston CC. Effect of osteoarthritis in the lumbar spine and hip on bone mineral density and diagnosis of osteoporosis in elderly men and women. Osteoporos Int 1997;7:564-569  https://doi.org/10.1007/BF02652563
  31. Tummala S, Schiphof D, Byrjalsen I, Dam EB. Gender differences in knee joint congruity quantified from MRI: a validation study with data from center for clinical and basic research and osteoarthritis initiative. Cartilage 2018;9:38-45  https://doi.org/10.1177/1947603516684590
  32. Kerrigan DC, Todd MK, Della Croce U. Gender differences in joint biomechanics during walking: normative study in young adults. Am J Phys Med Rehabil 1998;77:2-7  https://doi.org/10.1097/00002060-199801000-00002
  33. Looker AC, Beck TJ, Orwoll ES. Does body size account for gender differences in femur bone density and geometry? J Bone Miner Res 2001;16:1291-1299 https://doi.org/10.1359/jbmr.2001.16.7.1291