DOI QR코드

DOI QR Code

The New Way to Define Key Oncogenic Drivers of Small Cell Lung Cancer

  • Kee-Beom Kim (BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University)
  • 투고 : 2022.11.24
  • 심사 : 2023.02.14
  • 발행 : 2023.03.15

초록

Small-cell lung cancer (SCLC) continues to be the deadliest of all lung cancer types. Its high mortality is largely attributed to the unchangeable development of resistance to standard chemo/radiotherapies, which have remained invariable for the past 30 years, underlining the need for new therapeutic approaches. Recent studies of SCLC genome revealed a large number of somatic alterations and identified remarkable heterogeneity of the frequent mutations except for the loss of both RB and P53 tumor suppressor genes (TSGs). Identifying the somatic alterations scattered throughout the SCLC genome will help to define the underlying mechanism of the disease and pave the way for the discovery of therapeutic vulnerabilities associated with genomic alterations. The new technique made it possible to determine the underlying mechanism for the discovery of therapeutic targets. To these ends, the techniques have been focused on understanding the molecular determinants of SCLC.

키워드

과제정보

This research was supported by Kyungpook National University Research Fund, 2022.

참고문헌

  1. Augert A, Zhang Q, Bates B, Cui M, Wang X, Wildey G, Dowlati A, MacPherson D (2017) Small cell lung cancer exhibits frequent inactivating mutations in the histone methyltransferase KMT2D/MLL2: CALGB 151111 (alliance). J Thorac Oncol 12:704-713. https://doi.org/10.1016/j.jtho.2016.12.011
  2. Balanis NG, Sheu KM, Esedebe FN, Patel SJ, Smith BA, Park JW, Alhani S, Gomperts BN, Huang J, Witte ON, Graeber TG (2019) Pan-cancer convergence to a small-cell neuroendocrine phenotype that shares susceptibilities with hematological malignancies. Cancer Cell 36:17-34.E7. https://doi.org/10.1016/j.ccell.2019.06.005
  3. Byers LA, Rudin CM (2015) Small cell lung cancer: Where do we go from here? Cancer 121:664-672. https://doi.org/10.1002/cncr.29098
  4. Cardnell RJ, Li L, Sen T, Bara R, Tong P, Fujimoto J, Ireland AS, Guthrie MR, Bheddah S, Banerjee U, Kalu NN, Fan YH, Dylla SJ, Johnson FM, Wistuba II, Oliver TG, Heymach JV, Glisson BS, Wang J, Byers LA (2017) Protein expression of TTF1 and cMYC define distinct molecular subgroups of small cell lung cancer with unique vulnerabilities to aurora kinase inhibition, DLL3 targeting, and other targeted therapies. Oncotarget 8:73419-73432. https://doi.org/10.18632/oncotarget.20621
  5. Chalishazar MD, Wait SJ, Huang F, Ireland AS, Mukhopadhyay A, Lee Y, Schuman SS, Guthrie MR, Berrett KC, Vahrenkamp JM, Hu Z, Kudla M, Modzelewska K, Wang G, Ingolia NT, Gertz J, Lum DH, Cosulich SC, Bomalaski JS, DeBerardinis RJ, Oliver TG (2019) MYC-driven small-cell lung cancer is metabolically distinct and vulnerable to arginine depletion. Clin Cancer Res 25:5107-5121. https://doi.org/10.1158/1078-0432.CCR-18-4140
  6. Cong L, Ann Ran F, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819-823. https://doi.org/10.1126/science.1231143
  7. Friedel RH, Seisenberger C, Kaloff C, Wurst W (2007) EUCOMM-The European conditional mouse mutagenesis program. Brief Funct Genomics Proteomics 6:180-185. https://doi.org/10.1093/bfgp/elm022
  8. Gay CM, Allison Stewart C, Park EM, Diao L, Groves SM, Heeke S, et al. (2021) Patterns of transcription factor programs and immune pathway activation define four major subtypes of SCLC with distinct therapeutic vulnerabilities. Cancer Cell 39:346-360.E7. https://doi.org/10.1016/j.ccell.2020.12.014
  9. George J, Lim JS, Jang SJ, Cun Y, Ozretic L, Kong G, et al. (2015) Comprehensive genomic profiles of small cell lung cancer. Nature 524:47-53. https://doi.org/10.1038/nature14664
  10. Hansen GM, Markesich DC, Burnett MB, Zhu Q, Dionne KM, Richter LJ, Finnell RH, Sands AT, Zambrowicz BP, Abuin A (2008) Large-scale gene trapping in C57BL/6N mouse embryonic stem cells. Genome Res 18:1670-1679. https://doi.org/10.1101/gr.078352.108
  11. Jia D, Augert A, Kim DW, Eastwood E, Wu N, Ibrahim AH, Kim KB, Dunn CT, Pillai SPS, Gazdar AF, Bolouri H, Park KS, MacPherson D (2018) Crebbp loss drives small cell lung cancer and increases sensitivity to HDAC inhibition. Cancer Discov 8:1422-1437. https://doi.org/10.1158/2159-8290.CD-18-0385
  12. Kim DW, Wu N, Kim YC, Cheng PF, Basom R, Kim D, Dunn CT, Lee AY, Kim K, Lee CS, Singh A, Gazdar AF, Harris CR, Eisenman RN, Park KS, MacPherson D (2016) Genetic requirement for Mycl and efficacy of RNA Pol I inhibition in mouse models of small cell lung cancer. Genes Dev 30:1289-1299. https://doi.org/10.1101/gad.279307.116
  13. Kim KB, Kabra A, Kim DW, Xue Y, Huang Y, Hou PC, Zhou Y, Miranda LJ, Park JI, Shi X, Bender TP, Bushweller JH, Park KS (2022a) KIX domain determines a selective tumor-promoting role for EP300 and its vulnerability in small cell lung cancer. Sci Adv 8:eabl4618.
  14. Kim KB, Kim DW, Kim Y, Tang J, Kirk N, Gan Y, Kim B, Fang B, Park J, Zheng Y, Park KS (2022b) WNT5A-RHOA signaling is a driver of tumorigenesis and represents a therapeutically actionable vulnerability in small cell lung cancer. Cancer Res 82:4219-4233. https://doi.org/10.1158/0008-5472.CAN-22-1170
  15. Kim KB, Kim Y, Rivard CJ, Kim DW, Park KS (2020) FGFR1 is critical for RBL2 loss-driven tumor development and requires PLCG1 activation for continued growth of small cell lung cancer. Cancer Res 80:5051-5062. https://doi.org/10.1158/0008-5472.CAN-20-1453
  16. Lally BE, Urbanic JJ, William Blackstock A, Miller AA, Perry MC (2007) Small cell lung cancer: Have we made any progress over the last 25 years? Oncologist 12:1096-1104. https://doi.org/10.1634/theoncologist.12-9-1096
  17. Lewis DR, Check DP, Caporaso NE, Travis WD, Devesa SS (2014) US lung cancer trends by histologic type. Cancer 120:2883-2892. https://doi.org/10.1002/cncr.28749
  18. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339:823-826. https://doi.org/10.1126/science.1232033
  19. Mollaoglu G, Guthrie MR, Bohm S, Bragelmann J, Can I, Ballieu PM, et al. (2017) MYC drives progression of small cell lung cancer to a variant neuroendocrine subtype with vulnerability to Aurora kinase inhibition. Cancer Cell 31:270-285. https://doi.org/10.1016/j.ccell.2016.12.005
  20. Ng SR, Rideout WM 3rd, Akama-Garren EH, Bhutkar A, Mercer KL, Schenkel JM, Bronson RT, Jacks T (2020) CRISPR-mediated modeling and functional validation of candidate tumor suppressor genes in small cell lung cancer. Proc Natl Acad Sci USA 117:513-521. https://doi.org/10.1073/pnas.1821893117
  21. Oberg K, Modlin IM, De Herder W, Pavel M, Klimstra D, Frilling A, Metz DC, Heaney A, Kwekkeboom D, Strosberg J, Meyer T, Moss SF, Washington K, Wolin E, Liu E, Goldenring J (2015) Consensus on biomarkers for neuroendocrine tumour disease. Lancet Oncol 16:E435-E446. https://doi.org/10.1016/S1470-2045(15)00186-2
  22. Park JY, Jang SH (2016) Epidemiology of lung cancer in Korea: Recent trends. Tuberc Respir Dis 79:58-69. https://doi.org/10.4046/trd.2016.79.2.58
  23. Peifer M, Fernandez-Cuesta L, Sos ML, George J, Seidel D, Kasper LH, et al. (2012) Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer. Nat Genet 44:1104-1110. https://doi.org/10.1038/ng.2396
  24. Rogers ZN, McFarland CD, Winters IP, Seoane JA, Brady JJ, Yoon S, Curtis C, Petrov DA, Winslow, MM (2018) Mapping the in vivo fitness landscape of lung adenocarcinoma tumor suppression in mice. Nat Genet 50:483-486. https://doi.org/10.1038/s41588-018-0083-2
  25. Rudin CM, Brambilla E, Faivre-Finn C, Sage J (2021) Small-cell lung cancer. Nat Rev Dis Primers 7:3.
  26. Rudin CM, Durinck S, Stawiski EW, Poirier JT, Modrusan Z, Shames DS, et al.(2012) Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene in small-cell lung cancer. Nat Genet 44:1111-1116. https://doi.org/10.1038/ng.2405
  27. Russell WC (2000) Update on adenovirus and its vectors. J Gen Virol 81:2573-2604. https://doi.org/10.1099/0022-1317-81-11-2573
  28. Schaffer BE, Park KS, Yiu G, Conklin JF, Lin C, Burkhart DL, Karnezis AN, Alejandro Sweet-Cordero EA, Sage J (2010) Loss of p130 accelerates tumor development in a mouse model for human small-cell lung carcinoma. Cancer Res 70:3877-3883. https://doi.org/10.1158/0008-5472.CAN-09-4228
  29. Torre LA, Siegel RL, Jemal A (2016) Lung cancer statistics. In: Ahmad A, Gadgeel S (eds), Lung Cancer and Personalized Medicine: Current Knowledge and Therapies. Advances in Experimental Medicine and Biology. Vol. 893. Springer, Cham, pp 1-19.
  30. Walrath JC, Hawes JJ, Van Dyke T, Reilly KM (2010) Chapter 4. Genetically engineered mouse models in cancer research. Adv Cancer Res 106:113-164. https://doi.org/10.1016/S0065-230X(10)06004-5
  31. Weinstein JN, Collisson EA, Mills GB, Shaw KRM, Ozenberger BA, Ellrott K, Shmulevich I, Sander C, Stuart JM (2013) The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet 45:1113-1120. https://doi.org/10.1038/ng.2764
  32. Xue W, Chen S, Yin H, Tammela T, Papagiannakopoulos T, Joshi NS, Cai W, Yang G, Bronson R, Crowley DG, Zhang F, Anderson DG, Sharp PA, Jacks T (2014) CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature 514:380-384. https://doi.org/10.1038/nature13589
  33. Yin H, Xue W, Chen S, Bogorad RL, Benedetti E, Grompe M, Koteliansky V, Sharp PA, Jacks T, Anderson DG (2014) Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat Biotechnol 32:551-553. https://doi.org/10.1038/nbt.2884