DOI QR코드

DOI QR Code

Design of a Dual Band-pass Filter Using Fork-type Open Stubs and SIR Structure

포크 형태의 개방형 스터브 및 SIR 구조를 이용한 이중대역 대역통과 여파기의 설계

  • Tae-Hyeon Lee (Dept. of Electronic Engineering, Gyeonggi University of Science and Technology)
  • 이태현 (경기과학기술대학교 전자공학과 )
  • Received : 2022.03.01
  • Accepted : 2023.01.18
  • Published : 2023.02.28

Abstract

This paper proposes a design of a dual-band band-pass filter that integrates a λg/2 open SIR structure, a transmission line, and a fork-type structure with symmetric and asymmetric open stubs. To obtain the dual-band effect, the proposed filter uses the SIR structure and adjusts the impedance ratio of the SIR structure. Therefore, the position of the harmonics of the filter is shifted through the adjustment of the impedance ratio, and this can obtain a double-band effect. In order to obtain the dual-band characteristics, the dual-band effect is obtained by inserting a open stub between the SIR structures with the SIR structure divided in half. In addition, the second frequency response is obtained by adjusting the length of the open symmetrical stub in the fork-shaped structure. The asymmetrical open stub in the fork form achieves optimum bandwidth by adjusting the length. Therefore, the first center frequency of the proposed band-pass filter is 5.896 GHz and the bandwidth is 13.6 %. At this time, the measurement results are 0.13 dB and 33.6 dB. The second center frequency is 5.906 GHz and the bandwidth is 13.6 %. At this time, the measurement results are 0.15 dB and 19.8 dB. The reason is that when the impedance ratio (Δ) is higher than 1, the position of the harmonic is shifted to a lower frequency band. However, if the impedance ratio (Δ) is lowered by one step, the position of harmonics will move to a higher frequency band. The function of the filter designed using these characteristics can be obtained from the measurement result. The proposed band-pass filter has no coupling loss and no via energy concentration loss because there is no coupling structure of input/output and no via hole. Therefore, system integration is possible due to its excellent performance, and it is expected that dedicated short-range communication (DSRC) system applications used in traffic communication systems will be possible.

본 논문은 λg/2 개방형 SIR 구조와 전송선로와 대칭 및 비대칭 개방형 스터브를 가진 포크-형태의 구조를 일체화한 이중대역 대역통과 여파가 설계에 대해 제안을 한다. 이중대역 효과를 얻기 위해, 제안된 여파기는 SIR 구조를 이용했고, SIR 구조의 임피던스 비율을 조절한다. 그러므로 여파기의 고조파는 임피던스 비율의 조절을 통해 위치가 이동하게 되며 이는 이중대역 효과를 얻을 수 있다. 이중대역 특성을 얻기 위해 SIR 구조를 반으로 나눈 상태에서 SIR 구조 사이에 개방형 스터브를 삽입하여 이중대역 효과를 얻는다. 또한 포크 형태의 구조에서 개방형 대칭 스터브의 길이를 조절함으로써 두 번째 주파수 응답을 얻는다. 포크 형태에서 비대칭 개방형 스터브는 길이의 조절을 통해 최적의 대역폭을 얻는다. 그러므로 제안된 대역통과 여파기의 첫 번째 중심 주파수는 5.896 GHz이며 대역폭은 13.6 % 이다. 이때, 측정 결과는 0.13 dB 및 33.6 dB이다. 두 번째 중심 주파수는 5.906 GHz이며 대역폭은 13.6 % 이다. 이때, 측정 결과는 0.15 dB 및 19.8 dB이다. 그 이유는 임피던스 비율(Δ)이 1보다 높으면 고조파의 위치는 낮은 주파수 대역으로 이동하게 된다. 그러나 임피던스 비율(Δ)이 1보 낮아지게 된다면 고조파의 위치는 높은 주파수 대역으로 이동하게 될 것이다. 이러한 특징을 이용하여 설계된 여파기의 기능은 측정 결과에서 얻을 수 있다. 제안한 대역통과 여파기는 입출력의 결합구조와 비아 홀이 없기 때문에 결합손실과 비아 에너지 집중 손실이 없다. 그러므로 성능이 우수하여 시스템 집적화가 가능하며 교통통신 시스템에서 활용되는 DSRC (dedicated short-range communication) 시스템 응용이 가능할 것으로 기대된다.

Keywords

Acknowledgement

본 연구는 교내 연구비(경기과학기술대학교)로 수행되었음.

References

  1. Ali, I., Asif, M., Riaz Ur Rehman, Khan, M., Yingge, D. H., Kim, S. J., Pu, Y. G., Yoo, S. S. and Lee, K. Y.(2020), "A highly reliable, 5.8 GHz DSRC wake-up receiver with an intelligent digital controller for an ETC system", Sensors, vol. 20, pp.4012(1-21). https://doi.org/10.1109/JSEN.2019.2959158
  2. Bettisworth, C., Burt, M., Chachich, A., Harrington, R., Hassol, J. and Kim, A.(2015), Status of the dedicated short-range communications technology and applications, US Department of Transportation, Washington, DC, FHWA-JPO-15-218.
  3. Cselyuszka, N., Sakotic, Z., Kitic, G., Crnojevic-Bengin, V. and Jankovic, N.(2018), "Novel dual-band band-pass filters based on surface plasmon polariton-like propagation induced by structural dispersion of substrate integrated waveguide", Scientific Reports, vol. 8, p.8332.
  4. Kang, Y. H.(2021), "Standardization and spectrum policy for the introduction of autonomous V2X", Journal of Korean Ins. of Electromagnetic Engineering and Science, vol. 32, no. 2, pp.110-118. https://doi.org/10.5515/KJKIEES.2021.32.2.110
  5. Karimi, G., Salehi, A. and Javidan, F.(2018), "Miniaturized (UWB) band pass filter using elliptical-ring multi-mode stub-loaded resonator (MM-SLR)", Radioengineering, vol. 27, no. 3, pp.732-737. https://doi.org/10.13164/re.2018.0732
  6. Kim, C. G., Jo, S. H., Hong, B. J. and Shin, Y.(2018), "A study on the interference between WAVE and RF DSRC", Journal of Information Technology and Architecture, vol. 15, no. 4, pp.537-543. https://doi.org/10.22865/JITA.2018.15.4.537
  7. Kim, K., Ganesan, P. B., Mallick, J., Karampatsis, L. D. and Kunz, A.(2019.10), "5G V2X architecture and radio aspects", 2019 IEEE Conference on Standards for Communications and Networking(CSCN), Granada.
  8. Li, P., Chu, H., Zhao, D. and Chen, R. S.(2017), "Compact dual-band balanced SIW bandpass filter with improved common-mode suppression", IEEE Microwave Wireless Component Letters, vol. 27, no. 4, pp.347-349. https://doi.org/10.1109/LMWC.2017.2678428
  9. Liu, H., Wen, P., Zhao, Y., Ren, B., Wang, X. and Guan, X.(2014), "Dual-band uperconducting bandpass filter using quadruple-mode resonator", IEEE Transaction on Applied Superconductivity, vol. 24, no. 2, pp.4901204-4901204.
  10. Makimoto, M. and Yamashita, S.(1994), Microwave resonators and filters for wireless communication theory, design and application, Springer, pp.13-15.
  11. Rahman, M. and Park, J. D.(2018), "A compact tri-band bandpass filter using two stub-loaded dual mode resonators", Progress In Electromagnetics Research M, vol. 64, pp.201-209. https://doi.org/10.2528/PIERM17120404
  12. Salmani, R., Bijari, A. and Zahiri, S. H.(2020), "Design of a microstrip dual-band bandpass filter using novel loaded asymmetric two coupled lines for WLAN applications", Journal of Electrical and Computer Engineering Innovations (JECEI), vol. 8, no. 2, pp.255-262.
  13. Sami, A. and Rahman, M.(2019), "A very compact quintuple band bandpass filter using multimode stub loaded resonator", Progress In Electromagnetics Research C, vol. 93, pp.211-222. https://doi.org/10.2528/PIERC19040409
  14. Wang, X., Wang, J., Zhu, L., Choi, W. W. and Wu, W.(2019), "Compact stripline dual-band bandpass filters with controllable frequency ratio and high selectivity based on self-coupled resonator", IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 1, pp.102-110. https://doi.org/10.1109/TMTT.2019.2945768
  15. Wei, F., Yu, J. H., Zhang, C. Y., Zeng, C. and Shi, X. W.(2020), "Compact balanced dual-band BPFs based on short and open stub loaded resonators with wide common-mode suppression", IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 12, pp.3043-3047. https://doi.org/10.1109/TCSII.2020.2994632
  16. Weng, M. H., Zheng, F. Z., Lai, H. Z. and Liu, S. K.(2020), "Compact ultra-wideband bandpass filters achieved by using a stub-loaded stepped impedance resonator", Electronics, vol. 9, no. 2, p.209.
  17. Wu, Y. L. and Xiong, X. Z.(2010), "A dual-wideband bandpass filter based on E-shaped microstrip SIR with improved upperstopband performance", Progress In Electromagnetics Research, vol. 108, pp.141-153. https://doi.org/10.2528/PIER10071802
  18. Xu, Y., Liu, Z., Wang, S., Tang, W. and Chen, J.(2021), "Design of a multilayer dual-band balanced bandpass filter on a circular patch resonator", Front in Physics, vol. 25, p.709150.
  19. Zhang, Z. C., Chu, Q. X. and Chen, F. C.(2015), "Compact dual-band bandpass filters using open-short circuited stubs-loaded λg/4 resonators", IEEE Microwave and Wireless Components Letters, vol. 25, no. 10, pp.657-659. https://doi.org/10.1109/LMWC.2015.2463216