DOI QR코드

DOI QR Code

Robust seismic retrofit design framework for asymmetric soft-first story structures considering uncertainties

  • Assefa Jonathan Dereje (Department of Civil Engineering and Architectural Engineering, Sungkyunkwan University) ;
  • Jinkoo Kim (Department of Civil Engineering and Architectural Engineering, Sungkyunkwan University)
  • 투고 : 2022.12.22
  • 심사 : 2023.03.22
  • 발행 : 2023.04.25

초록

The uncertainties involved in structural performances are of importance when the optimum number and property of seismic retrofit devices are determined. This paper proposes a seismic retrofit design framework for asymmetric soft-first-story buildings, considering uncertainties in the soil condition and seismic retrofit device. The effect of the uncertain parameters on the structural performance is used to find a robust and optimal seismic retrofit solution. The framework finds a robust and optimal seismic retrofit solution by finding the optimal locations and mechanical properties of the seismic retrofit device for different realizations of the uncertain parameters. The structural performance for each realization is computed to evaluate the effect of the uncertainty parameters on the seismic performance. The framework utilizes parallel processing to decrease the computationally intensive nonlinear dynamic analysis time. The framework returns a robust design solution that satisfies the given limit state for every realization of the uncertain parameters. The proposed framework is applied to the seismic retrofit design of a five-story asymmetric soft-first-story case study structure retrofitted with a viscoelastic damper. Robust optimal parameters for retrofitting a structure to satisfy the limit state for the different realizations of the uncertain parameter are found using the proposed framework. According to the performance evaluation results of the retrofitted structure, the developed framework is proved effective in the seismic retrofit of the asymmetric structure with inherent uncertainties.

키워드

과제정보

This research was carried out by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1A2C2006631).

참고문헌

  1. American Society of Civil Engineers. (2017), Seismic Evaluation and Retrofit of Existing Buildings, American Society of Civil Engineers.
  2. Ancheta, T.D., Darragh, R.B., Stewart, J.P., Seyhan, E., Silva, W.J., Chiou, B.S.J., ... & Donahue, J.L. (2014), "NGA-West2 database", Earthq. Spectra, 30(3), 989-1005. https://doi.org/10.1193/070913EQS197M.
  3. Azandariani, A.G., Gholhaki, M. and Azandariani, M. G. (2022), "Assessment of damage index and seismic performance of steel plate shear wall (SPSW) system", J. Constr. Steel Res., 191, 107157. https://doi.org/10.1016/j.jcsr.2022.107157.
  4. Azandariani, M.G., Kafi, M.A. and Gholhaki, M. (2021), "Innovative hybrid linked-column steel plate shear wall (HLCS) system: Numerical and analytical approaches", J. Build. Eng., 43, 102844. https://doi.org/10.1016/j.jobe.2021.102844.
  5. Baker, J.W. and Lee, C. (2018), "An improved algorithm for selecting ground motions to match a conditional spectrum", J. Earthq. Eng., 22(4), 708-723. https://doi.org/10.1080/13632469.2016.1264334.
  6. Bandi, C. and Bertsimas, D. (2012), "Tractable stochastic analysis in high dimensions via robust optimization", Math. Program., 134(1), 23-70. https://doi.org/10.1007/s10107-012-0567-2.
  7. Beldica, C.E., Hilton, H.H. and Hinrichsen, R.L. (2002), "Viscoelastic beam damping and piezoelectric control of deformations, probabilistic failures and survival times-Analytical and massively parallel computational simulations", Adv. High Perform. Comput., 7, 55-64. https://doi.org/10.2495/HPC020061.
  8. Beyer, K., Dazio, A. and Priestley, M.J.N. (2008), "Inelastic wide-column models for U-shaped reinforced concrete walls", J. Earthq. Eng., 12, 1-33. https://doi.org/10.1080/13632460801922571.
  9. Boore, D.M., Stewart, J.P., Seyhan, E. and Atkinson, G.M. (2014), "NGA-West2 equations for predicting PGA, PGV, and 5% damped PSA for shallow crustal earthquakes", Earthq. Spectra, 30(3), 1057-1085. https://doi.org/10.1193/070113EQS184M.
  10. Clough, R.W., King, I.P. and Wilson, E.L. (1964), "Structural analysis of multistory buildings", J. Struct. Div., 90(3), 19-34. https://doi.org/10.1061/JSDEAG.0001087.
  11. de la Llera, J.C., Almazan, J.L. and Vial, I.J. (2005), "Torsional balance of plan-asymmetric structures with frictional dampers: Analytical results", Earthq. Eng. Struct. Dyn., 34(9), 1089-1108. https://doi.org/10.1002/eqe.469.
  12. Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T. (2002), "A fast and elitist multi-objective genetic algorithm: NSGA-II", IEEE Trans. Evol. Comput., 6(2), 182-197. https://doi.org/10.1109/4235.996017.
  13. Dereje, J.A., Eldin, M.N. and Kim, J. (2021), "Seismic retrofit of a soft first story structure using an optimally designed post-tensioned PC frame", Earthq. Struct., 20(6), 627-637. https://doi.org/10.12989/eas.2021.20.6.627.
  14. Eldin, M.N., Dereje, A.J. and Kim, J. (2019), "Seismic retrofit of RC buildings using self-centering PC frames with friction-dampers", Eng. Struct., 208, 109925. https://doi.org/10.1016/j.engstruct.2019.109925.
  15. Eskandari Nasab, M.S. and Kim, J. (2022), "Fuzzy analysis of a viscoelastic damper in seismic retrofit of structures", Eng. Struct., 250, 113473. https://doi.org/10.1016/j.engstruct.2021.113473.
  16. Federal Emergency Management Agency (FEMA) (2020), A Practical Guide to Soil-Structure Interaction FEMA P-2091.
  17. Freddi, F., Ghosh, J., Kotoky, N. and Raghunandan, M. (2021), "Device uncertainty propagation in low-ductility RC frames retrofitted with BRBs for seismic risk mitigation", Earthq. Eng. Struct. Dyn., 50(9), 2488-2509. https://doi.org/10.1002/eqe.3456.
  18. Garcia, M., de la Llera, J.C. and Almazan, J.L. (2007), "Torsional balance of plan asymmetric structures with viscoelastic dampers", Eng. Struct., 29(6), 914-932. https://doi.org/10.1016/j.engstruct.2006.06.022.
  19. Gholami, M., Zare, E., Azandariani, M.G. and Moradifard, R. (2021), "Seismic behavior of dual buckling-restrained steel braced frame with eccentric configuration and post-tensioned frame system", Soil Dyn. Earthq. Eng., 151, 106977. https://doi.org/10.1016/j.soildyn.2021.106977.
  20. Goel, R.K. (1998), "Effects of supplemental viscous damping on seismic response of asymmetric-plan systems", Earthq. Eng. Struct. Dyn., 27(2), 125-141. https://doi.org/10.1002/(SICI)1096-9845(199802)27:2<125::AID-EQE720>3.0.CO,2-6.
  21. Javidan, M.M. and Kim, J. (2019), "Variance-based global sensitivity analysis for fuzzy random structural systems", Comput.-Aid. Civil Infrastr. Eng., 34(7), 602-615. https://doi.org/10.1111/mice.12436.
  22. Jayaram, N., Lin, T. and Baker, J.W. (2011), "A Computationally efficient ground-motion selection algorithm for matching a target response spectrum mean and variance", Earthq. Spectra, 27(3), 797-815. https://doi.org/10.1193/1.3608002.
  23. Kang, H., Adane, M., Chun, S. and Kim, J. (2022), "Development of a seismic retrofit system made of steel frame with vertical slits", Steel Compos. Struct., 44(2), 269-280. https://doi.org/10.12989/scs.2022.44.2.269.
  24. Kasai, K. (1993), "Viscoelastic damper hysteresis model: Theory, experiment, and application ATC-17-1 seminar", Appl. Technol. Council, 2, 521-532.
  25. KBC, A.I.K. (2016), Korean Building Code-Structural, Seoul, Korea.
  26. Kim, J. and Jeong, J. (2016), "Seismic retrofit of asymmetric structures using steel plate slit dampers", J. Constr. Steel Res., 120, 232-244. https://doi.org/10.1016/j.jcsr.2016.02.001.
  27. Kim, J., Kim, M. and Eldin, M.N. (2017), "Optimal distribution of steel plate slit dampers for seismic retrofit of structures", Steel Compos. Struct., 25(4), 473-484. https://doi.org/10.12989/scs.2017.25.4.473.
  28. Lavan, O. and Avishur, M. (2013), "Seismic behavior of viscously damped yielding frames under structural and damping uncertainties", Bull. Earthq. Eng., 11(6), 2309-2332. https://doi.org/10.1007/s10518-013-9479-7.
  29. MacLeod, I.A. (1973), "Analysis of shear wall buildings by the frame method", Proc. Inst. Civil Eng., 55(3), 593-603. https://doi.org/10.1680/iicep.1973.4691
  30. McKenna, F., Scott, M.H. and Fenves, G.L. (2010), "Nonlinear finite-element analysis software architecture using object composition", J. Comput. Civil Eng., 24(1), 95-107. https://doi.org/10.1061/(asce)cp.1943-5487.0000002.
  31. Mondoro, A., Frangopol, D.M. and Liu, L. (2018), "Multi-criteria robust optimization framework for bridge adaptation under climate change", Struct. Saf., 74, 14-23. https://doi.org/10.1016/j.strusafe.2018.03.002.
  32. Nasab, M.S.E. and Kim, J. (2020), "Seismic retrofit of structures using hybrid steel slit-viscoelastic dampers", J. Struct. Eng., 146(11), 04020238. https://doi.org/10.1061/(asce)st.1943-541x.0002816.
  33. Nasab, M.S.E., Chun, S. and Kim, J. (2021), "Soil-structure interaction effect on seismic retrofit of a soft first-story structure", Struct., 32, 1553-1564. https://doi.org/10.1016/j.istruc.2021.03.105.
  34. Nasab, M.S.E., Guo, Y.Q. and Kim, J. (2022), "Seismic retrofit of a soft first-story building using viscoelastic dampers considering inherent uncertainties", J. Build. Eng., 47, 103866. https://doi.org/10.1016/j.jobe.2021.103866.
  35. Nasab, M.S.E., Javidan, M.M., Chun, S. and Kim, J. (2021), "Experimental study on seismic retrofit of a RC frame using viscoelastic dampers", Struct., 34, 771-786. https://doi.org/10.1016/j.istruc.2021.08.044.
  36. NIST, G.C.R. (2012), GCR 12-917-21, Soil-Structure Interaction for Building Structures, US Department of Commerce.
  37. Ozsarac, V., Monteiro, R. and Calvi, G.M. (2021), "Probabilistic seismic assessment of reinforced concrete bridges using simulated records", Struct. Infrastr. Eng., 19(4), 554-574. https://doi.org/10.1080/15732479.2021.1956551.
  38. Petti, L. and De Iuliis, M. (2008), "Torsional seismic response control of asymmetric-plan systems by using viscous dampers", Eng. Struct., 30(11), 3377-3388. https://doi.org/10.1016/j.engstruct.2008.05.023.
  39. Rysanek, A.M. and Choudhary, R. (2013), "Optimum building energy retrofits under technical and economic uncertainty", Energy Build., 57, 324-337. https://doi.org/10.1016/j.enbuild.2012.10.027.
  40. Scozzese, F., Dall'Asta, A. and Tubaldi, E. (2019), "Seismic risk sensitivity of structures equipped with anti-seismic devices with uncertain properties", Struct. Saf., 77, 30-47. https://doi.org/10.1016/j.strusafe.2018.10.003.
  41. Xu, Z.D. (2009), "Horizontal shaking table tests on structures using innovative earthquake mitigation devices", J. Sound Vib., 325(1-2), 34-48. https://doi.org/10.1016/j.jsv.2009.03.019.
  42. Xu, Z.D., Tu, Q. and Guo, Y.F. (2012), "Experimental study on vertical performance of multidimensional earthquake isolation and mitigation devices for long-span reticulated structures", J. Vib. Control, 18(13), 1971-85. https://doi.org/10.1177/10775463114293.
  43. Zhu, M., McKenna, F. and Scott, M.H. (2018), "OpenSeesPy: Python library for the OpenSees finite element framework", SoftwareX, 7, 6-11. https://doi.org/10.1016/j.softx.2017.10.009.