Acknowledgement
This work was supported by the National Natural Science Foundation of China (Grant number: 52008376, 52178151) and the Key Scientific Research Project of Colleges and Universities in Henan Province (Grant number: 21A560014)
References
- Bassoli, E., Van Nimmen, K., Vincenzi, L. and Van den Broeck, P. (2018), "A spectral load model for pedestrian excitation including vertical human-structure interaction", Eng. Struct., 156, 537-547. https://doi.org/10.1016/j.engstruct.2017.11.050.
- Bendat, J.S. and Piersol, A.G. (2011), Random Data Analysis and Measurement Procedures, 4th Edition, John Wiley & Sons, Hoboken, New Jersey, USA.
- Berardengo, M., Drago, L., Manzoni, S. and Vanali, M. (2019), "An approach to predict human-structure interaction in the case of staircases", Arch. Appl. Mech., 89(10), 2167-2191. https://doi.org/10.1007/s00419-019-01569-2.
- Brownjohn, J.M.W., Pavic, A. and Omenzetter, P. (2004), "A spectral density approach for modelling continuous vertical forces on pedestrian structures due to walking", Can. J. Civil Eng., 31(1), 65-77. https://doi.org/10.1139/l03-072.
- Cao, L. and Chen, Y.F. (2020), "A simplified method for determining the acceleration amplitudes of long-span floor system under walking/running loads", Struct. Eng. Mech., 75(3), 377-387. http://doi.org/10.12989/sem.2020.75.3.377.
- Cao, L., Liu, J., Zhou, X. and Chen, Y.F. (2018), "Vibration performance characteristics of a long-span and light-weight concrete floor under human-induced loads", Struct. Eng. Mech., 65(3), 349-357. https://doi.org/10.12989/sem.2018.65.3.349.
- Caprani, C. (2014), "Application of the pseudo-excitation method to assessment of walking variability on footbridge vibration", Comput. Struct., 132, 43-54. https://doi.org/10.1016/j.compstruc.2013.11.001.
- Chen, J., Li, G. and Racic, V. (2018a), "A data-driven wavelet-based approach for generating jumping loads", Mech. Syst. Signal Pr., 106, 49-61. https://doi.org/10.1016/j.ymssp.2017.12.013.
- Chen, J., Tan, H., Van Nimmen, K. and Van den Broeck, P. (2019), "Data-driven synchronization analysis of a bouncing crowd", Shock Vib., 2019, Article ID 8528763. https://doi.org/10.1155/2019/8528763.
- Chen, J., Wang, J. and Brownjohn, J.M.W. (2018b), "Power spectral-density model for pedestrian walking load", J. Struct. Eng., 145(2), 4018239. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002248.
- Chen, J., Wang, L., Racic, V. and Lou, J. (2016), "Acceleration response spectrum for prediction of structural vibration due to individual bouncing", Mech. Syst. Signal Pr., 76, 394-408. https://doi.org/10.1016/j.ymssp.2016.02.032.
- Comer, A.J., Blakeborough, A. and Williams, M.S. (2013), "Rhythmic crowd bobbing on a grandstand simulator", J. Sound Vib., 332(2), 442-454. https://doi.org/10.1016/j.jsv.2012.08.012.
- Davenport, A.G. (1961), "The spectrum of horizontal gustiness near the ground in high winds", Quart. J. Roy Meteorol. Soc., 87(372), 194-211. https://doi.org/10.1002/qj.49708737208.
- de Brito, V.L. and Pimentel, R.L. (2009), "Cases of collapse of demountable grandstands", J. Perform Constr. Facil., 23(3), 151-159. https://doi.org/10.1061/(asce)cf.1943-5509.0000006.
- Duarte, E. and Ji, T. (2009), "Action of individual bouncing on structures", J. Struct. Eng., 135(7), 818-827. https://doi.org/10.1061/(ASCE)0733-9445(2009)135:7(818).
- Ellis, B.R. and Ji, T. (2004), "Loads generated by jumping crowds: Numerical modelling", Struct. Eng., 82(17), 35-40.
- Ferrarotti, A. and Tubino, F. (2016), "Generalized equivalent spectral model for serviceability analysis of footbridges", J. Bridge Eng., 21(12), 4016091. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000963.
- Housner, G.W. (1947). "Characteristics of strong-motion earthquakes", Bull. Seismol. Soc. Am., 37(1), 19-31. https://doi.org/10.1785/BSSA0370010019.
- ISO 10137 (2007), Bases for Design of Structures-Serviceability of Buildings and Walkways Against Vibrations, International Organization for Standardization, Geneva, Switzerland.
- IStructE (2008), Dynamic Performance Requirements for Permanent Grandstands: Recommendations for Management Design and Assessment, Institution of Structural Engineers, London, UK.
- Jones, C.A., Reynolds, P. and Pavic, A. (2011), "Vibration serviceability of stadia structures subjected to dynamic crowd loads: A literature review", J. Sound Vib., 330(8), 1531-1566. https://doi.org/10.1016/j.jsv.2010.10.032.
- Lee, S.H., Lee, K.K., Woo, S.S. and Cho, S.H. (2013), "Global vertical mode vibrations due to human group rhythmic movement in a 39 story building structure", Eng. Struct., 57, 296-305. https://doi.org/10.1016/j.engstruct.2013.09.035.
- Liu, J., Cao, L. and Chen, Y.F. (2019), "Analytical solution for free vibration of multi-span continuous anisotropic plates by the perturbation method", Struct. Eng. Mech., 69(3), 283-291. https://doi.org/10.12989/sem.2019.69.3.283.
- Parkhouse, J.G. and Ewins, D.J. (2006), "Crowd-induced rhythmic loading", Proc. Inst. Civil Eng.-Struct. Build., 159(5), 247-259. https://doi.org/10.1680/stbu.2006.159.5.247.
- Piccardo, G. and Tubino, F. (2012), "Equivalent spectral model and maximum dynamic response for the serviceability analysis of footbridges", Eng. Struct., 40, 445-456. https://doi.org/10.1016/j.engstruct.2012.03.005.
- Racic, V. and Chen, J. (2015), "Data-driven generator of stochastic dynamic loading due to people bouncing", Comput. Struct., 158, 240-250. https://doi.org/10.1016/j.compstruc.2015.04.013.
- Racic, V. and Pavic, A. (2010), "Stochastic approach to modelling of near-periodic jumping loads", Mech. Syst. Signal Pr., 24(8), 3037-3059. https://doi.org/10.1016/j.ymssp.2010.05.019.
- Raftoyiannis, I.G. and Michaltsos, G.T. (2018), "Dynamic behavior of footbridges strengthened by external cable systems", Struct. Eng. Mech., 66(5), 595-608. http://doi.org/10.12989/sem.2018.66.5.595.
- Sim, J., Blakeborough, A., Williams, M.S. and Parkhouse, G. (2008), "Statistical model of crowd jumping loads", J. Struct. Eng., 134(12), 1852-1861. https://doi.org/10.1061/(asce)0733-9445(2008)134:12(1852).
- Van Nimmen, K., Lombaert, G., De Roeck, G. and Van den Broeck, P. (2017), "The impact of vertical human-structure interaction on the response of footbridges to pedestrian excitation", J. Sound Vib., 402, 104-121. https://doi.org/10.1016/j.jsv.2017.05.017.
- Vanmarcke, E.H. (1975), "On the distribution of the first-passage time for normal stationary random processes", J. Appl. Mech., 42(1), 215-220. https://doi.org/10.1115/1.3423521.
- Venuti, F., Racic, V. and Corbetta, A. (2016), "Modelling framework for dynamic interaction between multiple pedestrians and vertical vibrations of footbridges", J. Sound Vib., 379, 245-263. https://doi.org/10.1016/j.jsv.2016.05.047.
- Wang, H., Chen, J. and Nagayama, T. (2019), "Parameter identification of spring-mass-damper model for bouncing people", J. Sound Vib., 456, 13-29. https://doi.org/10.1016/j.jsv.2019.05.034.
- Wang, J. and Chen, J. (2017), "A comparative study on different walking load models", Struct. Eng. Mech., 63(6), 847-856. http://doi.org/10.12989/sem.2017.63.6.847.
- Wolmuth, B. and Surtees, J. (2003), "Crowd-related failure of bridges", Proc. Inst. Civil Eng.-Civil Eng., 156(3), 116-123. https://doi.org/10.1680/cien.2003.156.3.116.
- Xiong, J. and Chen, J. (2018), "Power spectral density function for individual jumping load", Int. J. Struct. Stab. Dyn., 18(02), 1850023. https://doi.org/10.1142/s0219455418500232.
- Xiong, J. and Chen, J. (2019a), "A Generative adversarial network model for simulating various types of human-induced loads." Int. J. Struct. Stab. Dyn., 19(08), 1950092. https://doi.org/10.1142/S0219455419500925.
- Xiong, J. and Chen, J. (2019b), "Random field model for crowd jumping loads", Struct. Saf., 76, 197-209. https://doi.org/10.1016/j.strusafe.2018.10.001.
- Xiong, J., Chen, J. and Caprani, C. (2021), "Spectral analysis of human-structure interaction during crowd jumping", Appl. Math. Model., 89, 610-626. https://doi.org/10.1016/j.apm.2020.07.030.
- Zhu, Q., Hui, X., Du, Y. and Zhang, Q. (2019), "A full path assessment approach for vibration serviceability and vibration control of footbridges", Struct. Eng. Mech., 70(6), 765-779. http://doi.org/10.12989/sem.2019.70.6.765.
- Zivanovic, S., Pavic, A. and Reynolds, P. (2005), "Vibration serviceability of footbridges under human-induced excitation: A literature review", J. Sound Vib., 279(1-2), 1-74. https://doi.org/10.1016/j.jsv.2004.01.019.
- Zivanovic, S., Pavic, A. and Reynolds, P. (2007), "Probability-based prediction of multi-mode vibration response to walking excitation", Eng. Struct., 29(6), 942-954. https://doi.org/10.1016/j.engstruct.2006.07.004.