DOI QR코드

DOI QR Code

Vibrations of a taut horizontal cable subjected to axial support excitations considering nonlinear quasi-static responses

  • Jiang Yi (Department of Civil Engineering, Guangzhou University) ;
  • Yingqi Liu (School of Transportation and Logistics Engineering, Wuhan University of Technology)
  • Received : 2022.01.19
  • Accepted : 2023.03.13
  • Published : 2023.04.25

Abstract

To calculate the vibrations of a tout cable subjected to axial support excitations, a nonlinear relationship of cable force and the support displacement under static situations are employed to depict the quasi-static vibration of the cable. The dynamic components of quasi-static vibration are inputted as "direct loads" to cause the parametric vibrations on the cable. Both the governing equations of motion and deformation compatibility for parametric vibrations are then derived, which indicates the high coupling of cable parametric force and deformation. Numerical solutions, based on the finite difference method, are put forward for the parametric vibrations, which is validated by the finite element method under periodic axial support excitations. For the quasi-static response, the shorter cables are more sensitive to support excitations than longer ones at small cable force. The quasi-static cable force makes the greatest contribution to the total cable force, but the parametric cable force is responsible for the occurrence of cable loosening at large excitation amplitudes. Moreover, this study also revealed that the traditional approach, assuming a linear relationship between quasi-static cable force and axial support displacement, would result in some great error of the cable parametric responses.

Keywords

Acknowledgement

This work was supported by supported by National Natural Science Foundation of China (No. 52108445), Education Department of Guangdong Province (No. 2021KQNCX069) and Technology Planning Project of Guangzhou (No. 202102020594). The supports are gratefully acknowledged.

References

  1. Akkaya, T. and van Horssen, W.T. (2019), "On boundary damping to reduce the rain-wind oscillations of an inclined cable with small bending stiffness", Nonlin. Dyn., 95(1), 783-808. https://doi.org/10.1007/s11071-018-4596-0. 
  2. Ali, H. and Abdel-Ghaffar, A. (1995), "Modeling the nonlinear seismic behavior of cable-stayed bridges with passive control bearings", Comput. Struct., 54(3), 461-492. https://doi.org/10.1016/0045-7949(94)00353-5. 
  3. Ali, H.N. (1995), Parametrically Excited Systems, in The Method of Normal Forms, Ed. A.H. Nayfeh, 258-364. 
  4. Antonio, P.D.C., Martins, J., Branco, F. and Lilien, J.L. (1996), "Oscillations of bride stay cables induced by periodic motions of deck and/or towers", J. Eng. Mech., 122(7), 613-622. https://doi.org/10.1061/(ASCE)0733-9399(1996)122:7(613). 
  5. Bi, J.H., Qiao, H.Y., Nikitas, N., Guan, J., Wang, J. and Lu, P. (2018), "Numerical modelling for rain wind induced vibration of cables with longitudinal ribs", J. Wind Eng. Indus. Aerodyn., 178, 69-79. https://doi.org/10.1016/j.jweia.2018.05.002. 
  6. Demsic, M., Uros, M., Jaguljnjak Lazarevic, A. and Lazarevic, D. (2019), "Resonance regions due to interaction of forced and parametric vibration of a parabolic cable", J. Sound Vib., 447, 78-104. https://doi.org/10.1016/j.jsv.2019.01.036. 
  7. Ernst, J. (1965), "Der E-Modul von Seilen unter berucksichtigung des Durchhanges", Der Bauingenieur, 40(2), 52-55. 
  8. Fujino, Y., Kimura, K. and Tanaka, H. (2012), Cable Vibrations and Control Methods, in Wind Resistant Design of Bridges in Japan: Developments and Practices, Springer Japan, Tokyo. 
  9. Gao, D., Chen, W., Christophe, E. and Li, H. (2018), "Multi-mode responses, rivulet dynamics, flow structures and mechanism of rain-wind induced vibrations of a flexible cable", J. Fluid. Struct., 82, 154-172. https://doi.org/10.1016/j.jfluidstructs.2018.06.017. 
  10. Georgakis, C.T. and Taylor, C.A. (2005), "Nonlinear dynamics of cable stays. Part 1: Sinusoidal cable support excitation", J. Sound Vib., 281(3-5), 537-564. https://doi.org/10.1016/j.jsv.2004.01.022. 
  11. Gheorghiu, C., Yamazaki, F., Ganev, T. and Ishizaki, H. (1998), "Seismic response of the Higashi-Kobe Bridge during the 1995 Hyogoken-Nanbu earthquake", Bull. Earthq. Resist. Struct. Res. Center, 31, 23-39. 
  12. Gimsing, N.J. and Georgakis, C.T. (2012), Cable Supported Bridges: Concept and Design, 3rd Edition, John Wiley & Sons Ltd., London, UK. 
  13. Gonzalez Buelga, A., Neild, S., Wagg, D. and Macdonald, J.H.G. (2008), "Modal stability of inclined cables subjected to vertical support excitation", J. Sound Vib., 318, 565-579. https://doi.org/10.1016/j.jsv.2008.04.031. 
  14. Hikami, Y. and Shiraishi, N. (1988), "Rain-wind induced vibrations of cables in cable stayed bridges", J. Wind Eng. Indus. Aerodyn., 29(1-3), 409-418.  https://doi.org/10.1016/0167-6105(88)90179-1
  15. Irvine, H.M. and Griffin, J.H. (1976), "On the dynamic response of a suspended cable", Earthq. Eng. Struct. Dyn., 4(4), 389-402. https://doi.org/10.1002/eqe.4290040406. 
  16. Irvine, M.H. (1981), Cable Structures, The MIT Press, Cambridge. 
  17. Karoumi, R. (1999), "Some modeling aspects in the nonlinear finite element analysis of cable supported bridges", Comput. Struct., 71(4), 397-412. https://doi.org/10.1016/S0045-7949(98)00244-2. 
  18. Lilien, J.L. and Costa, A.P.D. (1994), "Vibration amplitudes caused by parametric excitation of cable stayed structures", J. Sound Vib., 174(1), 69-90. https://doi.org/10.1006/jsvi.1994.1261. 
  19. Macdonald, J.H.G., Dietz, M.S., Neild, S.A., Gonzalez-Buelga, A., Crewe, A.J. and Wagg, D.J. (2010), "Generalised modal stability of inclined cables subjected to support excitations", J. Sound Vib., 329(21), 4515-4533. https://doi.org/10.1016/j.jsv.2010.05.002. 
  20. Matsumoto, M., Shiraishi, N. and Shirato, H. (1992), "Rain-wind induced vibration of cables of cable-stayed bridges", J. Wind Eng. Indus. Aerodyn., 43(1-3), 2011-2022. https://doi.org/10.1016/0167-6105(92)90628-N. 
  21. Matsumoto, M., Yagi, T., Shigemura, Y. and Tsushima, D. (2001), "Vortex-induced cable vibration of cable-stayed bridges at high reduced wind velocity", J. Wind Eng. Indus. Aerodyn., 89(7), 633-647. https://doi.org/10.1016/S0167-6105(01)00063-0. 
  22. McKenna, F. (2011), "OpenSees: A framework for earthquake engineering simulation", Comput. Sci. Eng., 13(4), 58-66. https://doi.org/10.1109/MCSE.2011.66. 
  23. Rega, G. (2004), "Nonlinear vibrations of suspended cables-Part I: Modeling and analysis", Appl. Mech. Rev., 57(6), 443-478. https://doi.org/10.1115/1.1777224. 
  24. Srinil, N., Rega, G. and Chucheepsakul, S. (2003), "Large amplitude three-dimensional free vibrations of inclined sagged elastic cables", Nonlin. Dyn., 33(2), 129-154. https://doi.org/10.1023/A:1026019222997. 
  25. Udo, P. and Niklas, N.J.W. (2003), "Modeling of rain-wind induced vibrations", Wind Struct., 6(1), 41-52. https://doi.org/10.12989/was.2003.6.1.041. 
  26. Wang, L. and Zhao, Y. (2009), "Large amplitude motion mechanism and non-planar vibration character of stay cables subject to the support motions", J. Sound Vib., 327(1-2), 121-133. https://doi.org/10.1016/j.jsv.2009.06.013. 
  27. Wang, P.H. and Yang, C.G. (1996), "Parametric studies on cablestayed bridges", Comput. Struct., 60(2), 243-260. https://doi.org/10.1016/0045-7949(95)00382-7. 
  28. Warminski, J., Zulli, D. and Rega, G. (2016), "Revisited modelling and multimodal nonlinear oscillations of a sagged cable under support motion", Meccanica, 51(11), 2541-2575. https://doi.org/10.1007/s11012-016-0450-y. 
  29. Warnitchai, P., Fujino, Y. and Susumpow, T. (1995), "A non-linear dynamic model for cables and its application to a cablestructure system", J. Sound Vib., 187(4), 695-712. https://doi.org/10.1006/jsvi.1995.0553. 
  30. Wilson, E.L. (1996), Three-Dimensional Static and Dynamic Analysis of Structures, Berkley: computers & structures inc. 
  31. Wu, Q., Takahashi, K. and Nakamura, S. (2003), "Non-linear vibrations of cables considering loosening", J. Sound Vib., 261(3), 385-402. https://doi.org/10.1016/S0022-460X(02)01090-8. 
  32. Xu, Y.L. and Wang, L.Y. (2003), "Analytical study of wind-raininduced cable vibration: SDOF model", J. Wind Eng. Indus. Aerodyn., 91(s 1-2), 27-40. https://doi.org/10.1016/S0167-6105(02)00333-1. 
  33. Yi, J. (2023), "Modeling and analysis of cable vibrations in cablestayed bridges under near-fault ground motions", Eng. Struct., 277, 115443. https://doi.org/10.1016/j.engstruct.2022.115443. 
  34. Yi, J. and Li, J. (2021), "Modelling of stay cables with large earthquake-induced force variations in cable-stayed bridges", Struct., 33, 627-636. https://doi.org/10.1016/j.istruc.2021.04.034. 
  35. Ying, Z.G., Ni, Y.Q. and Ko, J.M. (2008), "Parametrically excited instability of a cable under two support motions", Int. J. Struct. Stab. Dyn., 06(01), 43-58. https://doi.org/10.1142/S0219455406001794.