DOI QR코드

DOI QR Code

Construction of sports engineering structures with high resistance to improve the quality of sports training

  • Lin He (College of Sports and Health Sciences, Guangxi Minzu University) ;
  • Qiyuan Deng (College of General Studies, Guangxi Vocational College of Technology and Business)
  • 투고 : 2022.12.04
  • 심사 : 2023.03.20
  • 발행 : 2023.04.25

초록

The textile industry has benefited from nanotechnology in various fields of application as the use of nanomaterials, and nanotechnology is multiplying. Nanoparticles can increase the performance of textiles by up to 100 times when used in finishing, coating, and dyeing techniques, providing them with capabilities they did not previously possess. Nanotechnology is used in the textile chemical industry to produce sports mats with stain resistance, flame resistance, wrinkle resistance, moisture management, antimicrobial quality, and UV protection. The incorporation of nanomaterials into fabrics can have a significant effect on their properties, including shrinkage, strength, electrical conductivity, and flammability. Various inventions and innovations may result from nano-processed textiles in the future, thus leading to the advancement of science. This article presents the construction of sports engineering structures with high resistance to improve the quality of sports training. The mechanical properties of sports mats are improved with the help of nanotechnology. Strength, elasticity, and tear resistance are among these properties. This method enables the production of elastic, durable, and tear-resistant sports mats.

키워드

참고문헌

  1. Al-Furjan, M., Moghadam, S.A., Dehini, R., Shan, L., Habibi, M. and Safarpour, H. (2020), "Vibration control of a smart shell reinforced by graphene nanoplatelets under external load: Semi-numerical and finite element modeling", Thin Wall. Struct., 159, 107242. https://doi.org/10.1016/j.tws.2020.107242.
  2. Alipour, M., Torabi, M.A., Sareban, M., Lashini, H., Sadeghi, E., Fazaeli, A., Habibi, M. and Hashemi, R. (2020), "Finite element and experimental method for analyzing the effects of martensite morphologies on the formability of DP steels", Mech. Bas. Des. Struct. Mach., 48(5), 525-541. https://doi.org/10.1080/15397734.2019.1633343.
  3. Arfaoui, M.A., Dolez, P.I., Dube, M. and David, E. (2017), "Development and characterization of a hydrophobic treatment for jute fibres based on zinc oxide nanoparticles and a fatty acid", Appl. Surf. Sci., 397, 19-29. https://doi.org/10.1016/j.apsusc.2016.11.085.
  4. Azimi, M., Mirjavadi, S.S., Shafiei, N. and Hamouda, A.M.S. (2017), "Thermo-mechanical vibration of rotating axially functionally graded nonlocal Timoshenko beam", Appl. Phys. A, 123, 1-15. https://doi.org/10.1007/s00339-016-0712-5.
  5. Azimi, M., Mirjavadi, S.S., Shafiei, N., Hamouda, A.M.S. and Davari, E. (2018), "Vibration of rotating functionally graded Timoshenko nano-beams with nonlinear thermal distribution", Mech. Adv. Mater. Struct., 25(6), 467-480. https://doi.org/10.1080/15376494.2017.1285455.
  6. Bajpai, S.K., Pathak, V., Chand, N. and Soni, B. (2013), "Cellulose Nano Whiskers (CNWs) Loaded-Poly(sodium acrylate) hydrogels. Part-I. Effect of low concentration of CNWs on water uptake", J. Macromolec. Sci., Part A, 50(5), 466-477. https://doi.org/10.1080/10601325.2013.780946.
  7. Bigaud, D., Yan, W., Riahi, H., Chlela, R. and Benzarti, K. (2022), "Probabilistic calibration of environmental reduction and partial safety factors for the design of reinforced concrete beams strengthened by flax fibre reinforced polymers based on two-factor accelerated degradation tests", Constr. Build. Mater., 355, 129090. https://doi.org/10.1016/j.conbuildmat.2022.129090.
  8. Borda d' A gua, R., Branquinho, R., Duarte, M.P., Mauricio, E., Fernando, A.L., Martins, R. and Fortunato, E. (2018), "Efficient coverage of ZnO nanoparticles on cotton fibres for antibacterial finishing using a rapid and low cost in situ synthesis", New J. Chem., 42(2), 1052-1060. https://doi.org/10.1039/C7NJ03418K.
  9. Brook, L.A., Evans, P., Foster, H.A., Pemble, M.E., Steele, A., Sheel, D.W. and Yates, H.M. (2007), "Highly bioactive silver and silver/titania composite films grown by chemical vapour deposition", J. Photochem. Photobiol. A: Chem., 187(1), 53-63. https://doi.org/10.1016/j.jphotochem.2006.09.014.
  10. Chen, F., Chen, J., Duan, R., Habibi, M. and Khadimallah, M.A. (2022), "Investigation on dynamic stability and aeroelastic characteristics of composite curved pipes with any yawed angle", Compos. Struct., 284, 115195. https://doi.org/10.1016/j.compstruct.2022.115195.
  11. Cheng, F., Wang, H., Zong, G., Niu, B. and Zhao, X. (2023), "Adaptive finite-time command-filtered control for switched nonlinear systems with input quantization and output constraints", Circuit., Syst. Signal Pr., 42(1), 147-172. https://doi.org/10.1007/s00034-022-02088-2.
  12. Cheshmeh, E., Karbon, M., Eyvazian, A., Jung, D.W., Habibi, M. and Safarpour, M. (2020), "Buckling and vibration analysis of FG-CNTRC plate subjected to thermo-mechanical load based on higher order shear deformation theory", Mech. Bas. Des. Struct. Mach., 50(4), 1137-1160. https://doi.org/10.1080/15397734.2020.1744005.
  13. Dai, Z., Jiang, Z., Zhang, L. and Habibi, M. (2021), "Frequency characteristics and sensitivity analysis of a size-dependent laminated nanoshell", Adv. Nano Res., 10(2), 175. https://doi.org/10.12989/anr.2021.10.2.175.
  14. Dastjerdi, R., Mojtahedi, M.R.M., Shoshtari, A.M. and Khosroshahi, A. (2010), "Investigating the production and properties of Ag/TiO2/PP antibacterial nanocomposite filament yarns", J. Textile Inst., 101(3), 204-213. https://doi.org/10.1080/00405000802346388.
  15. Davies, P., Arhant, M. and Grossmann, E. (2022), "Seawater ageing of infused flax fibre reinforced acrylic composites", Compos. Part C: Open Access, 8, 100246. https://doi.org/10.1016/j.jcomc.2022.100246.
  16. Dolez, P.I. (2015), Chapter 1.1-Nanomaterials Definitions, Classifications, and Applications, Elsevier, Amsterdam.
  17. Ebrahimi, F., Hashemabadi, D., Habibi, M. and Safarpour, H. (2020), "Thermal buckling and forced vibration characteristics of a porous GNP reinforced nanocomposite cylindrical shell", Microsyst. Technol., 26(2), 461-473. https://doi.org/10.1007/s00542-019-04542-9.
  18. Ebrahimi, F. and Shafiei, N. (2016), "Application of Eringen's nonlocal elasticity theory for vibration analysis of rotating functionally graded nanobeams", Smart Struct. Syst., 17(5), 837-857. https://doi.org/10.12989/sss.2016.17.5.837.
  19. Ebrahimi, F. and Shafiei, N. (2017), "Influence of initial shear stress on the vibration behavior of single-layered graphene sheets embedded in an elastic medium based on Reddy's higher-order shear deformation plate theory", Mech. Adv. Mater. Struct., 24(9), 761-772. https://doi.org/10.1080/15376494.2016.1196781.
  20. Ebrahimi, F., Shafiei, N., Kazemi, M. and Mousavi Abdollahi, S.M. (2017), "Thermo-mechanical vibration analysis of rotating nonlocal nanoplates applying generalized differential quadrature method", Mech. Adv. Mater. Struct., 24(15), 1257-1273. https://doi.org/10.1080/15376494.2016.1227499.
  21. Ehyaei, J., Akbarshahi, A. and Shafiei, N. (2017), "Influence of porosity and axial preload on vibration behavior of rotating FG nanobeam", Adv. Nano Res., 5(2), 141. https://doi.org/10.12989/anr.2017.5.2.141.
  22. Fan, Y., Liu, J. and Fan, M. (2022), "Nursing effect of zinc oxide nanoantibacterial materials after adrenalectomy", J. Nanomater., 2022, Article ID 9051927. https://doi.org/10.1155/2022/9051927.
  23. Ghadiri, M., Hosseini, S.H.S. and Shafiei, N. (2016a), "A power series for vibration of a rotating nanobeam with considering thermal effect", Mech. Adv. Mater. Struct., 23(12), 1414-1420. https://doi.org/10.1080/15376494.2015.1091527.
  24. Ghadiri, M., Mahinzare, M., Shafiei, N. and Ghorbani, K. (2017a), "On size-dependent thermal buckling and free vibration of circular FG Microplates in thermal environments", Microsyst. Technol., 23, 4989-5001. https://doi.org/10.1007/s00542-017-3308-x.
  25. Ghadiri, M. and Shafiei, N. (2016a), "Nonlinear bending vibration of a rotating nanobeam based on nonlocal Eringen's theory using differential quadrature method", Microsyst. Technol., 22(12), 2853-2867. https://doi.org/10.1007/s00542-015-2662-9.
  26. Ghadiri, M. and Shafiei, N. (2016b), "Vibration analysis of rotating functionally graded Timoshenko microbeam based on modified couple stress theory under different temperature distributions", Acta Astronautica, 121, 221-240. https://doi.org/10.1016/j.actaastro.2016.01.003.
  27. Ghadiri, M. and Shafiei, N. (2017), "Vibration analysis of a nano-turbine blade based on Eringen nonlocal elasticity applying the differential quadrature method", J. Vib. Control, 23(19), 3247-3265. https://doi.org/10.1177/1077546315627.
  28. Ghadiri, M., Shafiei, N. and Akbarshahi, A. (2016b), "Influence of thermal and surface effects on vibration behavior of nonlocal rotating Timoshenko nanobeam", Appl. Phys. A, 122, 1-19. https://doi.org/10.1007/s00339-016-0196-3.
  29. Ghadiri, M., Shafiei, N. and Alavi, H. (2017b), "Thermomechanical vibration of orthotropic cantilever and propped cantilever nanoplate using generalized differential quadrature method", Mech. Adv. Mater. Struct., 24(8), 636-646. https://doi.org/10.1080/15376494.2016.1196770.
  30. Ghadiri, M., Shafiei, N. and Alavi, S.H. (2017c), "Vibration analysis of a rotating nanoplate using nonlocal elasticity theory", J. Solid Mech., 9(2), 319-337.
  31. Ghadiri, M., Shafiei, N. and Alireza Mousavi, S. (2016c), "Vibration analysis of a rotating functionally graded tapered microbeam based on the modified couple stress theory by DQEM", Appl. Phys. A, 122, 1-14. https://doi.org/10.1007/s00339-016-0364-5
  32. Ghadiri, M., Shafiei, N. and Safarpour, H. (2017d), "Influence of surface effects on vibration behavior of a rotary functionally graded nanobeam based on Eringen's nonlocal elasticity", Microsyst. Technol., 23, 1045-1065. https://doi.org/10.1007/s00542-016-2822-6.
  33. Ghadiri, M., Shafiei, N., Salekdeh, S.H., Mottaghi, P. and Mirzaie, T. (2016d), "Investigation of the dental implant geometry effect on stress distribution at dental implant-bone interface", J. Brazil. Soc. Mech. Sci. Eng., 38, 335-343. https://doi.org/10.1007/s40430-015-0472-8.
  34. Ghazanfari, A., Soleimani, S.S., Keshavarzzadeh, M., Habibi, M., Assempuor, A. and Hashemi, R. (2020), "Prediction of FLD for sheet metal by considering through-thickness shear stresses", Mech. Bas. Des. Struct. Mach., 48(6), 755-772. https://doi.org/10.1080/15397734.2019.1662310.
  35. Gomes, A.R., Guimaraes, A.T.B., Matos, L.P.d., Silva, A.M., Rodrigues, A.S.d.L., de Oliveira Ferreira, R., Islam, A.R.M.T., Rahman, M.M., Ragavendran, C., Kamaraj, C., Silva, F.G. and Malafaia, G. (2023), "Potential ecotoxicity of substrate-enriched zinc oxide nanoparticles to Physalaemus cuvieri tadpoles", Sci. Total Environ., 873, 162382. https://doi.org/10.1016/j.scitotenv.2023.162382.
  36. Guo, J., Baharvand, A., Tazeddinova, D., Habibi, M., Safarpour, H., Roco-Videla, A. and Selmi, A. (2021), "An intelligent computer method for vibration responses of the spinning multilayer symmetric nanosystem using multi-physics modeling", Eng. Comput., 38(Suppl 5), 4217-4238. https://doi.org/10.1007/s00366-021-01433-4.
  37. Habibi, M., Ghazanfari, A., Assempour, A., Naghdabadi, R. and Hashemi, R. (2017), "Determination of forming limit diagram using two modified finite element models", Mech Eng., 48(4), 141-144. https://doi.org/10.22060/MEJ.2016.664.
  38. Habibi, M., Hashemabadi, D. and Safarpour, H. (2019a), "Vibration analysis of a high-speed rotating GPLRC nanostructure coupled with a piezoelectric actuator", Eur. Phys. J. Plus, 134(6), 307. https://doi.org/10.1140/epjp/i2019-12742-7.
  39. Habibi, M., Mohammadi, A., Safarpour, H. and Ghadiri, M. (2019b), "Effect of porosity on buckling and vibrational characteristics of the imperfect GPLRC composite nanoshell", Mech. Bas. Des. Struct. Mach., 49(6), 811-840. https://doi.org/10.1080/15397734.2019.1701490.
  40. Hashemi, H.R., Alizadeh, A.a., Oyarhossein, M.A., Shavalipour, A., Makkiabadi, M. and Habibi, M. (2019), "Influence of imperfection on amplitude and resonance frequency of a reinforcement compositionally graded nanostructure", Wave. Random Complex Media, 31(6), 1340-1366. https://doi.org/10.1080/17455030.2019.1662968.
  41. Hou, F., Wu, S., Moradi, Z. and Shafiei, N. (2021), "The computational modeling for the static analysis of axially functionally graded micro-cylindrical imperfect beam applying the computer simulation", Eng. Comput., 38(Suppl 4), 3217-3235. https://doi.org/10.1007/s00366-021-01456-x.
  42. Huang, X., Zhang, Y., Moradi, Z. and Shafiei, N. (2021), "Computer simulation via a couple of homotopy perturbation methods and the generalized differential quadrature method for nonlinear vibration of functionally graded non-uniform microtube", Eng. Comput., 38(Suppl 3), 2481-2498. https://doi.org/10.1007/s00366-021-01395-7.
  43. Ishfaq, M., Hassan, W., Sabir, M., Somaily, H.H., Hachim, S.K., Kadhim, Z.J., Lafta, H.A., Alnassar, Y.S., Rheima, A.M., Ejaz, S.R. and Aadil, M. (2022), "Wet-chemical synthesis of ZnO/CdO/CeO2 heterostructure: A novel material for environmental remediation application", Ceram. Int., 48(23), 34590-34601. https://doi.org/10.1016/j.ceramint.2022.08.046.
  44. Joshi, M., Ali, S.W. and Rajendran, S. (2007), "Antibacterial finishing of polyester/cotton blend fabrics using neem (Azadirachta indica): A natural bioactive agent", J. Appl. Polym. Sci., 106(2), 793-800. https://doi.org/10.1002/app.26323.
  45. Kyene, M.O., Droepenu, E.K., Ayertey, F., Yeboah, G.N., Archer, M.A., Kumadoh, D., Mintah, S.O., Gordon, P.K. and Appiah, A.A. (2023), "Synthesis and characterization of ZnO nanomaterial from Cassia sieberiana and determination of its anti-inflammatory, antioxidant and antimicrobial activities", Scientif. Afr., 19, e01452. https://doi.org/10.1016/j.sciaf.2022.e01452.
  46. Li, Y., Niu, B., Zong, G., Zhao, J. and Zhao, X. (2022), "Command filter-based adaptive neural finite-time control for stochastic nonlinear systems with time-varying full-state constraints and asymmetric input saturation", Int. J. Syst. Sci., 53(1), 199-221. https://doi.org/10.1080/00207721.2021.1943562.
  47. Lim, S.K., Lee, S.K., Hwang, S.H. and Kim, H. (2006), "Photocatalytic deposition of silver nanoparticles onto organic/inorganic composite nanofibers", Macromolec. Mater. Eng., 291(10), 1265-1270. https://doi.org/10.1002/mame.200600264.
  48. Liu, S., Niu, B., Zong, G., Zhao, X. and Xu, N. (2022), "Adaptive fixed-time hierarchical sliding mode control for switched under-actuated systems with dead-zone constraints via event-triggered strategy", Appl. Math. Comput., 435, 127441. https://doi.org/10.1016/j.amc.2022.127441.
  49. Liu, Z., Hong, L. and Guo, B. (2005), "Physicochemical and electrochemical characterization of anatase titanium dioxide nanoparticles", J. Power Sourc., 143(1), 231-235. https://doi.org/10.1016/j.jpowsour.2004.11.056.
  50. Liu, Z., Su, S., Xi, D. and Habibi, M. (2020), "Vibrational responses of a MHC viscoelastic thick annular plate in thermal environment using GDQ method", Mech. Bas. Des. Struct. Mach., 50(8), 2688-2713. https://doi.org/10.1080/15397734.2020.1784201.
  51. Lori, E.S., Ebrahimi, F., Supeni, E.E.B., Habibi, M. and Safarpour, H. (2020), "The critical voltage of a GPL-reinforced composite microdisk covered with piezoelectric layer", Eng. Comput., 37(4), 3489-3508. https://doi.org/10.1007/s00366-020-01004-z.
  52. Mamidi, N. and Flores Otero, J.F. (2023), "Metallic and carbonaceous nanoparticles for dentistry applications", Curr. Opin. Biomed. Eng., 25, 100436. https://doi.org/10.1016/j.cobme.2022.100436.
  53. Matsunaga, T., Tomoda, R., Nakajima, T. and Wake, H. (1985), "Photoelectrochemical sterilization of microbial cells by semiconductor powders", FEMS Microbiol. Lett., 29(1-2), 211-214. https://doi.org/10.1111/j.1574-6968.1985.tb00864.x.
  54. Mirjavadi, S.S., Matin, A., Shafiei, N., Rabby, S. and Mohasel Afshari, B. (2017a), "Thermal buckling behavior of two-dimensional imperfect functionally graded microscale-tapered porous beam", J. Therm. Stress., 40(10), 1201-1214. https://doi.org/10.1080/01495739.2017.1332962.
  55. Mirjavadi, S.S., Mohasel Afshari, B., Khezel, M., Shafiei, N., Rabby, S. and Kordnejad, M. (2018a), "Nonlinear vibration and buckling of functionally graded porous nanoscaled beams", J. Brazil. Soc. Mech. Sci. Eng., 40, 1-12. https://doi.org/10.1007/s40430-018-1272-8.
  56. Mirjavadi, S.S., Mohasel Afshari, B., Shafiei, N., Hamouda, A.M.S. and Mohammad, K. (2017b), "Thermal vibration of two-dimensional functionally graded (2D-FG) porous Timoshenko nanobeams", Steel Compos. Struct., 25(4), 415-426. https://doi.org/10.12989/scs.2017.25.4.415.
  57. Mirjavadi, S.S., Mohasel Afshari, B., Shafiei, N., Rabby, S. and Kazemi, M. (2018b), "Effect of temperature and porosity on the vibration behavior of two-dimensional functionally graded micro-scale Timoshenko beam", J. Vib. Control, 24(18), 4211-4225. https://doi.org/10.1177/1077546317721.
  58. Mirjavadi, S.S., Rabby, S., Shafiei, N., Afshari, B.M. and Kazemi, M. (2017c), "On size-dependent free vibration and thermal buckling of axially functionally graded nanobeams in thermal environment", Appl. Phys. A, 123, 1-10. https://doi.org/10.1007/s00339-017-0918-1.
  59. Moayedi, H., Aliakbarlou, H., Jebeli, M., Noormohammadiarani, O., Habibi, M., Safarpour, H. and Foong, L. (2020a), "Thermal buckling responses of a graphene reinforced composite micropanel structure", Int. J. Appl. Mech., 12(01), 2050010. https://doi.org/10.1142/S1758825120500106.
  60. Moayedi, H., Ebrahimi, F., Habibi, M., Safarpour, H. and Foong, L.K. (2020b), "Application of nonlocal strain-stress gradient theory and GDQEM for thermo-vibration responses of a laminated composite nanoshell", Eng. Comput., 37, 3359-3374. https://doi.org/10.1007/s00366-020-01002-1.
  61. Moayedi, H., Habibi, M., Safarpour, H., Safarpour, M. and Foong, L. (2019), "Buckling and frequency responses of a graphene nanoplatelet reinforced composite microdisk", Int. J. Appl. Mech., 11(10), 1950102. https://doi.org/10.1142/S1758825119501023.
  62. Mohammed, M., Rahman, R., Mohammed, A.M., Betar, B.O., Osman, A.F., Adam, T., Dahham, O.S. and Gopinath, S.C.B. (2022), "Improving hydrophobicity and compatibility between kenaf fiber and polymer composite by surface treatment with inorganic nanoparticles", Arab. J. Chem., 15(11), 104233. https://doi.org/10.1016/j.arabjc.2022.104233.
  63. Montazer, M. and Seifollahzadeh, S. (2011), "Enhanced self-cleaning, antibacterial and UV protection properties of nano TiO2 treated textile through enzymatic pretreatment", Photochem. Photobiol.. 87(4), 877-883. https://doi.org/10.1111/j.1751-1097.2011.00917.x.
  64. Mousavi, S.M., Shafiei, N. and Dadvand, A. (2017), "Numerical simulation of subsonic turbulent flow over NACA0012 airfoil: evaluation of turbulence models", Sigma J. Eng. Nat. Sci., 35(1), 133-155.
  65. Najaafi, N., Jamali, M., Habibi, M., Sadeghi, S., Jung, D.w. and Nabipour, N. (2020), "Dynamic instability responses of the substructure living biological cells in the cytoplasm environment using stress-strain size-dependent theory", J. Biomolec. Struct. Dyn., 39(7), 2543-2554. https://doi.org/10.1080/07391102.2020.1751297.
  66. Nayab-Ul-Hossain, A.K.M., Sela, S.K., Hasib, M.A., Alam, M.M. and Shetu, H.R. (2022), "Preparation of graphene based natural fiber (Jute)-synthetic fiber (Glass) composite and evaluation of its multifunctional properties", Compos. Part C: Open Access, 9, 100308. https://doi.org/10.1016/j.jcomc.2022.100308.
  67. Noman, M.T., Petru, M., Louda, P. and Kejzlar, P. (2022), "Woven textiles coated with zinc oxide nanoparticles and their thermophysiological comfort properties", J. Nat. Fiber., 19(12), 4718-4730. https://doi.org/10.1080/15440478.2020.1870621.
  68. Omidi, S., Oskooee, M.B. and Shafiei, N. (2013), "Finite element analysis of an ultra-fine grained Titanium dental implant covered by different thicknesses of hydroxyapatite layer", Indian Journal of Dentistry. 4(1), 1-4. https://doi.org/10.1016/j.ijd.2012.10.002.
  69. Oyarhossein, M.A., Alizadeh, A.A., Habibi, M., Makkiabadi, M., Daman, M., Safarpour, H. and Jung, D.W. (2020), "Dynamic response of the nonlocal strain-stress gradient in laminated polymer composites microtubes", Scientif. Report., 10(1), 1-19. https://doi.org/10.1038/s41598-020-61855-w.
  70. Rana, A., Kumar, A., Sharma, G., Naushad, M., Bathula, C. and Stadler, F.J. (2021), "Pharmaceutical pollutant as sacrificial agent for sustainable synergistic water treatment and hydrogen production via novel Z- scheme Bi7O9I3/B4C heterojunction photocatalysts", J. Molec. Liquid., 343, 117652. https://doi.org/10.1016/j.molliq.2021.117652.
  71. Safarpour, H., Ghanizadeh, S.A. and Habibi, M. (2018), "Wave propagation characteristics of a cylindrical laminated composite nanoshell in thermal environment based on the nonlocal strain gradient theory", Eur. Phys. J. Plus, 133(12), 532. https://doi.org/10.1140/epjp/i2018-12385-2.
  72. Safarpour, H., Pourghader, J. and Habibi, M. (2019), "Influence of spring-mass systems on frequency behavior and critical voltage of a high-speed rotating cantilever cylindrical three-dimensional shell coupled with piezoelectric actuator", J. Vib. Control, 25(9), 1543-1557. https://doi.org/10.1177/1077546319828465.
  73. Safarpour, M., Ebrahimi, F., Habibi, M. and Safarpour, H. (2020), "On the nonlinear dynamics of a multi-scale hybrid nanocomposite disk", Eng. Comput., 37(3), 2369-2388. https://doi.org/10.1007/s00366-020-00949-5.
  74. Samy, M., Kumi, A.G., Salama, E., ElKady, M., Mensah, K. and Shokry, H. (2023), "Heterogeneous activation of persulfate by a novel nano-magnetite/ZnO/activated carbon nanohybrid for carbofuran degradation: Toxicity assessment, water matrices, degradation mechanism and radical and non-radical pathways", Proc. Saf. Environ. Protect., 169, 337-351. https://doi.org/10.1016/j.psep.2022.11.038.
  75. Sbardella, F., Lilli, M., Seghini, M.C., Bavasso, I., Touchard, F., Chocinski-Arnault, L., Rivilla, I., Tirillo, J. and Sarasini, F. (2021), "Interface tailoring between flax yarns and epoxy matrix by ZnO nanorods", Compos. Part A: Appl. Sci. Manuf., 140, 106156. https://doi.org/10.1016/j.compositesa.2020.106156.
  76. Senthilkumar, K., Senthilkumar, O., Yamauchi, K., Sato, M., Morito, S., Ohba, T., Nakamura, M. and Fujita, Y. (2009), "Preparation of ZnO nanoparticles for bio-imaging applications", Physica Status Solidi (B), 246(4), 885-888. https://doi.org/10.1002/pssb.200880606.
  77. Shafiei, N., Ghadiri, M. and Mahinzare, M. (2019), "Flapwise bending vibration analysis of rotary tapered functionally graded nanobeam in thermal environment", Mech. Adv. Mater. Struct., 26(2), 139-155. https://doi.org/10.1080/15376494.2017.1365982.
  78. Shafiei, N., Hamisi, M. and Ghadiri, M. (2020), "Vibration analysis of rotary tapered axially functionally graded Timoshenko nanobeam in thermal environment", J. Solid Mech.. 12(1), 16-32.
  79. Shafiei, N. and Kazemi, M. (2017a), "Buckling analysis on the bi-dimensional functionally graded porous tapered nano-/micro-scale beams", Aerosp. Sci. Technol., 66, 1-11. https://doi.org/10.1016/j.ast.2017.02.019.
  80. Shafiei, N. and Kazemi, M. (2017b), "Nonlinear buckling of functionally graded nano-/micro-scaled porous beams", Compos. Struct., 178, 483-492. https://doi.org/10.1016/j.compstruct.2017.07.045.
  81. Shafiei, N., Kazemi, M. and Ghadiri, M. (2016a), "Comparison of modeling of the rotating tapered axially functionally graded Timoshenko and Euler-Bernoulli microbeams", Physica E: Low Dimens. Syst. Nanostruct., 83, 74-87. https://doi.org/10.1016/j.physe.2016.04.011.
  82. Shafiei, N., Kazemi, M. and Ghadiri, M. (2016b), "Nonlinear vibration behavior of a rotating nanobeam under thermal stress using Eringen's nonlocal elasticity and DQM", Appl. Phys. A, 122, 1-18. https://doi.org/10.1007/s00339-016-0245-y.
  83. Shafiei, N., Kazemi, M. and Ghadiri, M. (2016c), "Nonlinear vibration of axially functionally graded tapered microbeams", Int. J. Eng. Sci., 102, 12-26. https://doi.org/10.1016/j.ijengsci.2016.02.007.
  84. Shafiei, N., Kazemi, M. and Ghadiri, M. (2016d), "On size-dependent vibration of rotary axially functionally graded microbeam", Int. J. Eng. Sci., 101, 29-44. https://doi.org/10.1016/j.ijengsci.2015.12.008.
  85. Shafiei, N., Kazemi, M., Safi, M. and Ghadiri, M. (2016e), "Nonlinear vibration of axially functionally graded non-uniform nanobeams", Int. J. Eng. Sci., 106, 77-94. https://doi.org/10.1016/j.ijengsci.2016.05.009.
  86. Shafiei, N., Mirjavadi, S.S., Afshari, B.M., Rabby, S. and Hamouda, A.M.S. (2017a), "Nonlinear thermal buckling of axially functionally graded micro and nanobeams", Compos. Struct., 168, 428-439. https://doi.org/10.1016/j.compstruct.2017.02.048.
  87. Shafiei, N., Mirjavadi, S.S., MohaselAfshari, B., Rabby, S. and Kazemi, M. (2017b), "Vibration of two-dimensional imperfect functionally graded (2D-FG) porous nano-/micro-beams", Comput. Meth. Appl. Mech. Eng., 322, 615-632. https://doi.org/10.1016/j.cma.2017.05.007.
  88. Shafiei, N., Mousavi, A. and Ghadiri, M. (2016f), "On size-dependent nonlinear vibration of porous and imperfect functionally graded tapered microbeams", Int. J. Eng. Sci., 106, 42-56. https://doi.org/10.1016/j.ijengsci.2016.05.007.
  89. Shafiei, N., Mousavi, A. and Ghadiri, M. (2016g), "Vibration behavior of a rotating non-uniform FG microbeam based on the modified couple stress theory and GDQEM", Compos. Struct., 149, 157-169. https://doi.org/10.1016/j.compstruct.2016.04.024.
  90. Shafiei, N. and She, G.L. (2018), "On vibration of functionally graded nano-tubes in the thermal environment", Int. J. Eng. Sci., 133, 84-98. https://doi.org/10.1016/j.ijengsci.2018.08.004.
  91. Shahabinejad, E., Shafiei, N. and Ghadiri, M. (2018), "Influence of temperature change on modal analysis of rotary functionally graded nano-beam in thermal environment", J. Solid Mech.. 10(4), 779-803.
  92. Shao, Y., Zhao, Y., Gao, J. and Habibi, M. (2021), "Energy absorption of the strengthened viscoelastic multi-curved composite panel under friction force", Arch. Civil Mech. Eng., 21(4), 1-29. https://doi.org/10.1007/s43452-021-00279-3.
  93. Shariati, A., Mohammad-Sedighi, H., Zur, K.K., Habibi, M. and Safa, M. (2020a), "On the vibrations and stability of moving viscoelastic axially functionally graded nanobeams", Mater., 13(7), 1707. https://doi.org/10.3390/ma13071707.
  94. Shariati, A., Mohammad-Sedighi, H., Zur, K.K., Habibi, M. and Safa, M. (2020b), "Stability and dynamics of viscoelastic moving rayleigh beams with an asymmetrical distribution of material parameters", Symmetry, 12(4), 586. https://doi.org/10.3390/sym12040586.
  95. Sharma, V., Singh, P., Pandey, A.K. and Dhawan, A. (2012), "Induction of oxidative stress, DNA damage and apoptosis in mouse liver after sub-acute oral exposure to zinc oxide nanoparticles", Muta. Res./Genetic Toxicol. Environ. Mutag., 745(1), 84-91. https://doi.org/10.1016/j.mrgentox.2011.12.009.
  96. Shirzad Choubari, M., Mazloom, J. and Ghodsi, F.E. (2022), "Supercapacitive properties, optical band gap, and photoluminescence of CeO2-ZnO nanocomposites prepared by eco-friendly green and citrate sol-gel methods: A comparative study", Ceram. Int., 48(15), 21344-21354. https://doi.org/10.1016/j.ceramint.2022.04.100.
  97. Shivanian, E., Ghadiri, M. and Shafiei, N. (2017), "Influence of size effect on flapwise vibration behavior of rotary microbeam and its analysis through spectral meshless radial point interpolation", Appl. Phys. A, 123, 1-16. https://doi.org/10.1007/s00339-017-0955-9.
  98. Singh, S., Jaiswal, V., Singh, J.K., Semwal, R. and Raina, D. (2023), "Nanoparticle formulations: A smart era of advanced treatment with nanotoxicological imprints on the human body", Chemico-Biolog. Interact., 373, 110355. https://doi.org/10.1016/j.cbi.2023.110355.
  99. Singh, S. and Kumar Gupta, P. (2022), "Effect of fiber orientation on mechanical properties of jute/carbon/glass hybrid composite", Mater. Today: Proc., 68, 2574-2580. https://doi.org/10.1016/j.matpr.2022.09.419.
  100. Stamboulis, A., Baillie, C.A. and Peijs, T. (2001), "Effects of environmental conditions on mechanical and physical properties of flax fibers", Compos. Part A: Appl. Sci. Manuf., 32(8), 1105-1115. https://doi.org/10.1016/S1359-835X(01)00032-X.
  101. Umetsu, M., Mizuta, M., Tsumoto, K., Ohara, S., Takami, S., Watanabe, H., Kumagai, I. and Adschiri, T. (2005), "Bioassisted room-temperature immobilization and mineralization of zinc oxide-the structural ordering of ZnO nanoparticles into a flower-type morphology", Adv. Mater., 17(21), 2571-2575. https://doi.org/10.1002/adma.200500863.
  102. Wang, M., Yang, M., Fang, Z., Wang, M. and Wu, Q. (2023), "A practical feeder planning model for urban distribution system", IEEE Trans. Power Syst., 38(2), 1297-1308. https://doi.org/10.1109/TPWRS.2022.3170933.
  103. Wang, P., Gao, Z., Pan, F., Moradi, Z., Mahmoudi, T. and Khadimallah, M.A. (2022), "A couple of GDQM and iteration techniques for the linear and nonlinear buckling of bi-directional functionally graded nanotubes based on the nonlocal strain gradient theory and high-order beam theory", Eng. Anal. Bound. Elem., 143, 124-136. https://doi.org/10.1016/j.enganabound.2022.06.007.
  104. Wang, Z., Yu, S., Xiao, Z. and Habibi, M. (2020), "Frequency and buckling responses of a high-speed rotating fiber metal laminated cantilevered microdisk", Mech. Adv. Mater. Struct., 1-14. https://doi.org/10.1080/15376494.2020.1824284.
  105. Wu, J. and Habibi, M. (2021), "Dynamic simulation of the ultra-fast-rotating sandwich cantilever disk via finite element and semi-numerical methods", Eng. Comput., 38(Suppl 5), 4127-4143. https://doi.org/10.1007/s00366-021-01396-6.
  106. Xu, W., Pan, G., Moradi, Z. and Shafiei, N. (2021a), "Nonlinear forced vibration analysis of functionally graded non-uniform cylindrical microbeams applying the semi-analytical solution", Compos. Struct., 275, 114395. https://doi.org/10.1016/j.compstruct.2021.114395.
  107. Xu, W., Pan, G., Moradi, Z. and Shafiei, N. (2021b), "Nonlinear forced vibration analysis of functionally graded non-uniform cylindrical microbeams applying the semi-analytical solution", Compos. Struct., 275, 114395. https://doi.org/10.1016/j.compstruct.2021.114395.
  108. Yang, D., Hassan, Q.U., Chen, Q.W., Yang, H.D., Bilal, M., Afzal, S. and Zhou, J.P. (2022), "Development of novel K0.8Ni0.4Ti1.6O4 nano bamboo leaves, microstructural characterization, double absorption, and photocatalytic removal of organic pollutant", Environ. Res., 211, 113118. https://doi.org/10.1016/j.envres.2022.113118.
  109. Zhang, H., Zhao, X., Wang, H., Zong, G. and Xu, N. (2022), "Hierarchical sliding-mode surface-based adaptive Actor-, Critic optimal control for switched nonlinear systems with unknown perturbation", IEEE Trans. Neur. Network. Learn. Syst., 1-13. https://doi.org/10.1109/TNNLS.2022.3183991.
  110. Zhao, Y., Wang, H., Xu, N., Zong, G. and Zhao, X. (2023), "Reinforcement learning-based decentralized fault tolerant control for constrained interconnected nonlinear systems", Chaos Solit. Fract., 167, 113034. https://doi.org/10.1016/j.chaos.2022.113034.
  111. Zhou, C., Zhao, Y., Zhang, J., Fang, Y. and Habibi, M. (2020), "Vibrational characteristics of multi-phase nanocomposite reinforced circular/annular system", Adv. Nano Res., 9(4), 295-307. https://doi.org/10.12989/anr.2020.9.4.295.