과제정보
This research is supported by the research grant of University of Tabriz (No. 2632).
참고문헌
- Alih, S.C., Vafaei, M., Ismail, N. and Pabarja, A. (2018), "Experimental study on a new damping device for mitigation of structural vibrations under harmonic excitation", Earthq. Struct., 14(6), 567-576. https://doi.org/10.12989/eas.2018.14.6.567.
- Amini, F. and Ghaderi, P. (2012), "Optimal locations for MR dampers in civil structures using improved ant colony algorithm", Opt. Control Appl. Meth., 33(2), 232-248. https://doi.org/10.1002/oca.991.
- Arfiadi, Y. and Hadi, M. (2011), "Optimum placement and properties of tuned mass dampers using hybrid genetic algorithms", Iran Univ. Sci. Technol., 1(1), 167-187.
- Aydin, E. (2012), "Optimal damper placement based on base moment in steel building frames", J. Constr. Steel Res., 79, 216-225. https://doi.org/10.1016/j.jcsr.2012.07.011.
- Aydin, E., Boduroglu, M. and Guney, D. (2007), "Optimal damper distribution for seismic rehabilitation of planar building structures", Eng. Struct., 29(2), 176-185. https://doi.org/10.1016/j.engstruct.2006.04.016.
- Azar, B.F., Veladi, H., Raeesi, F. and Talatahari, S. (2020), "Control of the nonlinear building using an optimum inverse TSK model of MR damper based on modified grey wolf optimizer", Eng. Struct., 214, 110657. https://doi.org/10.1016/j.engstruct.2020.110657.
- Azar, B.F., Veladi, H., Talatahari, S. and Raeesi, F. (2020), "Optimal design of magnetorheological damper based on tuning Bouc-Wen model parameters using hybrid algorithms", KSCE J. Civil Eng., 24, 867-878. https://doi.org/10.1007/s12205-020-0988-z.
- Chen, G. and Wu, J. (2001), "Optimal placement of multiple tune mass dampers for seismic structures", J. Struct. Eng., 127(9), 1054-1062. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:9(1054).
- Cheng, F.Y. (2008), Smart Structures: Innovative Systems for Seismic Response Control, CRC Press.
- Choi, K.M., Cho, S.W., Jung, H.J. and Lee, I.W. (2004), "Semiactive fuzzy control for seismic response reduction using magnetorheological dampers", Earthq. Eng. Struct. Dyn., 33(6), 723-736. https://doi.org/10.1002/eqe.372.
- Der Kiureghian, A., Zhang, Y. and Li, C.C. (1994), "Inverse reliability problem", J. Eng. Mech., 120(5), 1154-1159. https://doi.org/10.1061/(ASCE)0733-9399(1994)120:5(1154).
- Dorigo, M. and Birattari, M. (2010), "Ant colony optimization. Encyclopedia of machine learning", Ant Colony Optimization: A Component-Wise Overview, Marti, R., Ed, 1-28.
- Dyke, S., Spencer Jr, B., Sain, M. and Carlson, J. (1996), "Modeling and control of magnetorheological dampers for seismic response reduction", Smart Mater. Struct., 5(5), 565. https://doi.org/10.1088/0964-1726/5/5/006.
- Ghaffarzadeh, H. and Raeisi, F. (2016), "Damage identification in truss structures using finite element model updating and imperialist competitive algorithm", Jordan J. Civil Eng., 10(2), 266.
- Hadidi, A., Azar, B.F. and Shirgir, S. (2019), "Reliability assessment of semi-active control of structures with MR damper", Earthq. Struct., 17(2), 131-141. https://doi.org/10.12989/eas.2019.17.2.131.
- Jansen, L.M. and Dyke, S.J. (2000), "Semiactive control strategies for MR dampers: Comparative study", J. Eng. Mech., 126(8), 795-803. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:8(795).
- Kaveh, A. and Talatahari, S. (2010), "A novel heuristic optimization method: charged system search", Acta Mechanica, 213(3-4), 267-289. https://doi.org/10.1007/s00707-009-0270-4.
- Kennedy, J. and Eberhart, R. (1995), "Particle swarm optimization", Proceedings of ICNN'95-International Conference on Neural Networks.
- Kwok, N., Ha, Q., Nguyen, M., Li, J. and Samali, B. (2007), "Bouc-Wen model parameter identification for a MR fluid damper using computationally efficient GA", ISA Trans., 46(2), 167-179. https://doi.org/10.1016/j.isatra.2006.08.005.
- Metered, H., Bonello, P. and Oyadiji, S. (2010), "The experimental identification of magnetorheological dampers and evaluation of their controllers", Mech. Syst. Signal Pr., 24(4), 976-994. https://doi.org/10.1016/j.ymssp.2009.09.005.
- Mirjalili, S., Gandomi, A.H., Mirjalili, S.Z., Saremi, S., Faris, H. and Mirjalili, S.M. (2017), "Salp Swarm Algorithm: A bioinspired optimizer for engineering design problems", Adv. Eng. Softw., 114, 163-191. https://doi.org/10.1016/j.advengsoft.2017.07.002.
- Mirjalili, S., Mirjalili, S.M. and Lewis, A. (2014), "Grey wolf optimizer", Adv. Eng. Softw., 69, 46-61. https://doi.org/10.1016/j.advengsoft.2013.12.007.
- Mirzai, N.M., Zahrai, S.M. and Bozorgi, F. (2017), "Proposing optimum parameters of TMDs using GSA and PSO algorithms for drift reduction and uniformity", Struct. Eng. Mech., 63(2), 147-160. https://doi.org/10.12989/sem.2017.63.2.147.
- Raeesi, F., Azar, B.F., Veladi, H. and Talatahari, S. (2020), "An inverse TSK model of MR damper for vibration control of nonlinear structures using an improved grasshopper optimization algorithm", Struct., 26, 406-416. https://doi.org/10.1016/j.istruc.2020.04.026.
- Raeesi, F., Shirgir, S., Azar, B.F., Veladi, H. and Ghaffarzadeh, H. (2020), "Enhanced salp swarm algorithm based on opposition learning and merit function methods for optimum design of MTMD", Earthq. Struct., 18(6), 719-730. https://doi.org/10.12989/eas.2020.18.6.719.
- Raeesi, F., Veladi, H., Azar, B.F. and Talatahari, S. (2020), "A hybrid CSS-GW algorithm for finding optimum location of multi semi-active MR dampers in buildings", Int. J. Model., Identif. Control, 35(3), 191-202. https://doi.org/10.1504/IJMIC.2020.114194.
- Sapre, S. and Mini, S. (2019), "Opposition-based moth flame optimization with Cauchy mutation and evolutionary boundary constraint handling for global optimization", Soft Comput., 23(15), 6023-6041. https://doi.org/10.1007/s00500-018-3586-y.
- Sarkhel, R., Chowdhury, T.M., Das, M., Das, N. and Nasipuri, M. (2017), "A novel harmony search algorithm embedded with metaheuristic opposition based learning", J. Intel. Fuzzy Syst., 32(4), 3189-3199. https://doi.org/10.3233/JIFS-169262.
- Shan, X., Liu, K. and Sun, P.L. (2016), "Modified bat algorithm based on levy flight and opposition based learning", Scientif. Program., 2016, Article ID 8031560. https://doi.org/10.1155/2016/8031560.
- Spencer Jr, B., Dyke, S., Sain, M. and Carlson, J. (1997), "Phenomenological model for magnetorheological dampers", J. Eng. Mech., 123(3), 230-238. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:3(230).
- Takewaki, I. (1997), "Optimal damper placement for minimum transfer functions", Earthq. Eng. Struct. Dyn., 26(11), 1113-1124. https://doi.org/10.1002/(SICI)1096- 9845(199711)26:11<1113::AID-EQE696>3.0.CO;2-X.
- Talatahari, S., Kaveh, A. and Rahbari, N.M. (2012), "Parameter identification of Bouc-Wen model for MR fluid dampers using adaptive charged system search optimization", J. Mech. Sci. Technol., 26(8), 2523.
- Talatahari, S. and Rahbari, N.M. (2015), "Enriched Imperialist Competitive Algorithm for system identification of magnetorheological dampers", Mech. Syst. Signal Pr., 62, 506-516. https://doi.org/10.1016/j.ymssp.2015.03.020.
- Talatahari, S., Rahbari, N.M. and Kaveh, A. (2013), "A new hybrid optimization algorithm for recognition of hysteretic nonlinear systems", KSCE J. Civil Eng., 17, 1099-1108. https://doi.org/10.1007/s12205-013-0341-x.
- Tizhoosh, H.R. (2005), "Opposition-based learning: A new scheme for machine intelligence", International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCAIAWTIC'06).
- Vadtala, I.H., Soni, D.P. and Panchal, D.G. (2013), "Semi-active control of a benchmark building using neuro-inverse dynamics of MR damper", Procedia Eng., 51, 45-54. https://doi.org/10.1016/j.proeng.2013.01.010.
- Xu, Z.D. and Guo, Y.Q. (2006), "Fuzzy control method for earthquake mitigation structures with magnetorheological dampers", J. Intel. Mater. Syst. Struct., 17(10), 871-881. https://doi.org/10.1177/1045389X0606104.
- Xu, Z.D. and Shen, Y.P. (2003), "Intelligent bi-state control for the structure with magnetorheological dampers", J. Intel. Mater. Syst. Struct., 14(1), 35-42. https://doi.org/10.1177/1045389X0301400.
- Xu, Z.D., Shen, Y.P. and Guo, Y.Q. (2003), "Semi-active control of structures incorporated with magnetorheological dampers using neural networks", Smart Mater. Struct., 12(1), 80. https://doi.org/10.1088/0964-1726/12/1/309.
- Yang, Y., Xu, Z.D., Xu, Y.W. and Guo, Y.Q. (2020), "Analysis on influence of the magnetorheological fluid microstructure on the mechanical properties of magnetorheological dampers", Smart Mater. Struct., 29(11), 115025. https://doi.org/10.1088/1361-665X/abadd2.
- Yang, Y., Xu, Z.D., Guo, Y.Q., Sun, C.L. and Zhang, J. (2021), "Performance tests and microstructure-based sigmoid model for a three-coil magnetorheological damper", Struct. Control Hlth. Monit., 28(11), e2819. https://doi.org/10.1002/stc.2819.
- Zemp, R., de la Llera, J.C. and Almazan, J.L. (2011), "Tall building vibration control using a TM-MR damper assembly", Earthq. Eng. Struct. Dyn., 40(3), 339-354. https://doi.org/10.1002/eqe.1033.
- Zhou, Y., Hao, J.K. and Duval, B. (2017), "Opposition-based memetic search for the maximum diversity problem", IEEE Trans. Evol. Comput., 21(5), 731-745. https://doi.org/10.1109/TEVC.2017.2674800.