DOI QR코드

DOI QR Code

Development of an integrated machine learning model for rheological behaviours and compressive strength prediction of self-compacting concrete incorporating environmental-friendly materials

  • Pouryan Hadi (Department of Civil Engineering, Urmia Branch, Islamic Azad University) ;
  • KhodaBandehLou Ashkan (Department of Civil Engineering, Urmia Branch, Islamic Azad University) ;
  • Hamidi Peyman (Department of Civil Engineering, Urmia Branch, Islamic Azad University) ;
  • Ashrafzadeh Fedra (Department of Civil Engineering, Urmia Branch, Islamic Azad University)
  • 투고 : 2022.09.25
  • 심사 : 2023.03.10
  • 발행 : 2023.04.25

초록

To predict the rheological behaviours along with the compressive strength of self-compacting concrete that incorporates environmentally friendly ingredients as cement substitutes, a comparative evaluation of machine learning methods is conducted. To model four parameters, slump flow diameter, L-box ratio, V-funnel time, as well as compressive strength at 28 days-a complete mix design dataset from available pieces of literature is gathered and used to construct the suggested machine learning standards, SVM, MARS, and Mp5-MT. Six input variables-the amount of binder, the percentage of SCMs, the proportion of water to the binder, the amount of fine and coarse aggregates, and the amount of superplasticizer are grouped in a particular pattern. For optimizing the hyper-parameters of the MARS model with the lowest possible prediction error, a gravitational search algorithm (GSA) is required. In terms of the correlation coefficient for modelling slump flow diameter, L-box ratio, V-funnel duration, and compressive strength, the prediction results showed that MARS combined with GSA could improve the accuracy of the solo MARS model with 1.35%, 11.1%, 2.3%, as well as 1.07%. By contrast, Mp5-MT often demonstrates greater identification capability and more accurate prediction in comparison to MARS-GSA, and it may be regarded as an efficient approach to forecasting the rheological behaviors and compressive strength of SCC in infrastructure practice.

키워드

참고문헌

  1. Alabi, S.A., Olanitori, L.M. and Afolayan, J.O. (2012), "Optimum mix design for minimum concrete strength requirement using Akure pit-sand as fine aggregate", J. Emerg. Trends Eng. Appl. Sci., 3(4), 718-724.
  2. Al-Oran, A., Safiee, N.A. and Nasir, N.A.M. (2022), "Fresh and hardened properties of self-compacting concrete using metakaolin and GGBS as cement reAslani", Constr. Build. Mater., 232, 117230. https://doi.org/10.1080/19648189.2019.1663268.
  3. Aslanova, F. (2020), "A comparative study of the hardness and force analysis methods used in truss optimization with metaheuristic algorithms and under dynamic loading", J. Res. Sci., Eng. Technol., 29(1), 25-33. https://doi.org/10.24200/jrset.vol8iss1pp25-33.
  4. Asteris, P.G. and Kolovos, K.G. (2019), "Self-compacting concrete strength prediction using surrogate models", Neur. Comput. Appl., 31(1), 409-424. https://doi.org/10.1007/s00521-017-3007-7.
  5. Belalia Douma, O., Boukhatem, B., Ghrici, M. and Tagnit-Hamou, A. (2017), "Prediction of properties of self-compacting concrete containing fly ash using artificial neural network", Neur. Comput. Appl., 28(1), 707-718. https://doi.org/10.1007/s00521-016-2368-7.
  6. Binder, K. (1997), "Applications of Monte Carlo methods to statistical physics", Report. Progr. Phys., 60(5), 487. https://doi.org/10.1088/0034-4885/60/5/001.
  7. Cortes, C. and Vapnik, V. (1995), "Support-vector networks", Mach. Learn., 20(3), 273-297. https://doi.org/10.1023/A:1022627411411.
  8. De Belie, N., Soutsos, M. and Gruyaert, E. (2018), Properties of Fresh and Hardened Concrete Containing Supplementary Cementitious Materials, Springer.
  9. Dey, S., Kumar, V.V., Goud, K.R. and Basha, S.K.J. (2021), "State of art review on self compacting concrete using mineral admixtures", J. Build. Pathol. Rehabil., 6(1), 1-23. https://doi.org/10.1007/s41024-021-00110-9.
  10. Friedman, J.H. and Roosen, C.B. (1995), "An introduction to multivariate adaptive regression splines", Stat. Meth. Med. Res., 4(3), 197-217. https://doi.org/10.1177/096228029500400303.
  11. Ghaemi, A., Rezaie-Balf, M., Adamowski, J., Kisi, O. and Quilty, J. (2019), "On the applicability of maximum overlap discrete wavelet transform integrated with MARS and M5 model tree for monthly pan evaporation prediction", Agricult. Forest Meteorol., 278, 107647. https://doi.org/10.1016/j.agrformet.2019.107647.
  12. Ghasemvand, M., Behjat, B. and Ebrahimi, S. (2022), "Experimental investigation of the effects of adhesive defects on the strength and creep behavior of single-lap adhesive joints at various temperatures", J. Adhes., 8, 1-17. https://doi.org/10.1080/00218464.2022.2095262.
  13. Rakshe, S., Nimje, S.V. and Panigrahi, S.K. (2021), "Optimization of adhesively bonded Spar-Wingskin joints of laminated FRP composites subjected to pull-off load: A critical review", Rev. Adhes. Adhesiv., 8(1), 29-46. https://doi.org/10.7569/RAA.2020.097303.
  14. Gholhaki, M., Hajforoush, M. and Kazemi, M. (2018), "An investigation on the fresh and hardened properties of self-compacting concrete incorporating magnetic water with various pozzolanic materials", Constr. Build. Mater., 158, 173-180. https://doi.org/10.1016/j.conbuildmat.2017.09.135.
  15. Golewski, G.L. and Szostak, B. (2022), "Strength and microstructure of composites with cement matrixes modified by fly ash and active seeds of CSH phase", Struct. Eng. Mech., 82(4), 543-556. https://doi.org/10.12989/sem.2022.82.4.543.
  16. Igwe, J.F. and Eze, J.I. (2022), "Effect of temperature on the rheological properties of African Yam bean (Sphenostylis Stenocarpa) seed flour", J. Food Technol. Res., 9(1), 94-99. https://doi.org/10.18488/jftr.v9i1.3014
  17. Hani, N., Nawawy, O., Ragab, K.S. and Kohail, M. (2018), "The effect of different water/binder ratio and nano-silica dosage on the fresh and hardened properties of self-compacting concrete", Constr. Build. Mater., 165, 504-513. https://doi.org/10.1016/j.conbuildmat.2018.01.045.
  18. Huseien, G.F. and Shah, K.W. (2020), "Durability and life cycle evaluation of self-compacting concrete containing fly ash as GBFS replacement with alkali activation", Constr. Build. Mater., 235, 117458. https://doi.org/10.1016/j.conbuildmat.2019.117458.
  19. Jaradat, O.Z., Gadri, K., Tayeh, B.A. and Guettalaa, A. (2021), "Influence of sisal fibres and rubber latex on the engineering properties of sand concrete", Struct. Eng. Mech., 80(1), 47-62. https://doi.org/10.12989/sem.2021.80.1.047.
  20. Kiani, B., Gandomi, A.H., Sajedi, S. and Liang, R.Y. (2016), "New formulation of compressive strength of preformed-foam cellular concrete: an evolutionary approach", J. Mater. Civil Eng., 28(10), 4016092. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001602.
  21. Kim, S., Maleki, N., Rezaie-Balf, M., Singh, V.P., Alizamir, M., Kim, N.W. and Kisi, O. (2021), "Assessment of the total organic carbon employing the different nature-inspired approaches in the Nakdong River, South Korea", Environ. Monit. Assess., 193(7), 1-22. https://doi.org/10.1007/s10661-021-08907-4.
  22. Kina, C., Turk, K., Atalay, E., Donmez, I. and Tanyildizi, H. (2021), "Comparison of extreme learning machine and deep learning model in the estimation of the fresh properties of hybrid fiber-reinforced SCC", Neur. Comput. Appl., 33(18), 11641-11659. https://doi.org/10.1007/s00521-021-05836-8.
  23. Bouchaala, F., Ali, M.Y., Matsushima, J., Bouzidi, Y., Jouini, M.S., Takougang, E.M. and Mohamed, A.A. (2022), "Estimation of seismic wave attenuation from 3D seismic data: A case study of OBC data acquired in an offshore oilfield", Energi., 15(2), 534. https://doi.org/10.3390/en15020534.
  24. Li, K.F. (2021), "Effects of hybrid fibers on workability, mechanical, and time-dependent properties of high strength fiber-reinforced self-consolidating concrete", Constr. Build. Mater., 277, 122325. https://doi.org/10.1016/j.conbuildmat.2021.122325.
  25. Madandoust, R. and Mousavi, S.Y. (2012), "Fresh and hardened properties of self-compacting concrete containing metakaolin", Constr. Build. Mater., 35, 752-760. https://doi.org/10.1016/j.conbuildmat.2012.04.109.
  26. Madina, B. and Gumilyov, L.N. (2020), "Determination of the most effective location of environmental hardenings in concrete cooling tower under far-source seismic using linear spectral dynamic analysis results", J. Res. Sci., Eng. Technol., 29(1), 22-24. https://doi.org/10.24200/jrset.vol8iss1pp22-24.
  27. Mahalingam, B. and Nagamani, K. (2011), "Effect of processed fly ash on fresh and hardened properties of self compacting concrete", Int. J. Earth Sci. Eng., 4(5), 930-940.
  28. Mansouri, I., Ozbakkaloglu, T., Kisi, O. and Xie, T. (2016), "Predicting behavior of FRP-confined concrete using neuro fuzzy, neural network, multivariate adaptive regression splines and M5 model tree techniques", Mater. Struct., 49(10), 4319-4334. https://doi.org/10.1617/s11527-015-0790-4.
  29. Mazloom, M., Pourhaji, P. and Afzali-Naniz, O. (2021), "Effects of halloysite nanotube, nano-silica and micro-silica on rheology, hardened properties and fracture energy of SCLC", Struct. Eng. Mech., 80(1), 91-101. https://doi.org/10.12989/sem.2021.80.1.091.
  30. Miraki, H., Shariatmadari, N., Ghadir, P., Jahandari, S., Tao, Z. and Siddique, R. (2022), "Clayey soil stabilization using alkali-activated volcanic ash and slag", J. Rock Mech. Geotech. Eng., 14(2), 576-591. https://doi.org/10.1016/j.jrmge.2021.08.012.
  31. Mittal, H., Tripathi, A., Pandey, A.C. and Pal, R. (2021), "Gravitational search algorithm: A comprehensive analysis of recent variants", Multimed. Tool. Appl., 80(5), 7581-7608. https://doi.org/10.1007/s11042-020-09831-4.
  32. Moghadam, R.A. and Ebrahimi, S. (2021), "Design and analysis of a torsional mode MEMS disk resonator for RF applications", J. Multidisc. Eng. Sci. Technol. (JMEST), 8(7), 14300-14303.
  33. Mojtahedi, A., Hokmabady, H., Kouhi, M. and Mohammadyzadeh, S. (2022), "A novel ANN-RDT approach for damage detection of a composite panel employing contact and non-contact measuring data", Compos. Struct., 279, 114794. https://doi.org/10.1016/j.compstruct.2021.114794.
  34. Mussig, J. and Graupner, N. (2021), "Test methods for fibre/matrix adhesion in cellulose fibre-reinforced thermoplastic composite materials: A critical review", Rev. Adhesion Adhesives, 8(2), 68-129. https://doi.org/10.1002/9781119846703.ch4.
  35. Muthupriya, V.R.P., Sri, P.N. and Ramanathan, M.P. (2012), "Strength and workability character of self compacting concrete with GGBFS, FA and SF", Int. J. Emerg. Trend. Eng. Dev., 2(2), 424-434.
  36. Naqi, A. and Jang, J. (2019), "Recent progress in green cement technology utilizing low-carbon emission fuels and raw materials: A review", Sustain., 11(2), 537. https://doi.org/10.3390/su11020537.
  37. Najafzadeh, M., Rezaie Balf, M. and Rashedi, E. (2016), "Prediction of maximum scour depth around piers with debris accumulation using EPR, MT, and GEP models", J. Hydroinform., 18(5), 867-884. https://doi.org/10.2166/hydro.2016.212.
  38. Nepomuceno, M.C.S., Pereira-de-Oliveira, L.A. and Lopes, S.M. R. (2014), "Methodology for the mix design of self-compacting concrete using different mineral additions in binary blends of powders", Constr. Build. Mater., 64, 82-94. https://doi.org/10.1016/j.conbuildmat.2014.04.021.
  39. Nuruzzaman, M.D., Casimiro, J.O.C. and Sarker, P.K. (2020), "Fresh and hardened properties of high strength self-compacting concrete using by-product ferronickel slag fine aggregate", J. Build. Eng., 32, 101686. https://doi.org/10.1016/j.jobe.2020.101686.
  40. Patel, Souza, M.T., Ferreira, I.M., de Moraes, E.G., Senff, L. and de Oliveira, A.P.N. (2020), "3D printed concrete for large-scale buildings: An overview of rheology, printing parameters, chemical admixtures, reinforcements, and economic and environmental prospects", J. Build. Eng., 32, 101833. https://doi.org/10.1016/j.jobe.2020.101833.
  41. Putra, A.B.W. (2020), "Computer technology simulation towards power generation potential from coproduced fluids in south lokichar oil fields", Int. J. Commun. Comput. Technol., 8(2), 9-12.
  42. Raghavendra, S. and Deka, P.C. (2014), "Support vector machine applications in the field of hydrology: A review", Appl. Soft Comput. J., 19, 372-386. https://doi.org/10.1016/j.asoc.2014.02.002.
  43. Ranjbar, M. (2017), "Durability characteristics of self-compacting concrete incorporating pumice and metakaolin", J. Mater. Civil Eng., 29(11), 89-94. https://doi.org/10.1016/j.conbuildmat.2020.118580.
  44. Rashedi, E., Nezamabadi-Pour, H. and Saryazdi, S. (2009), "GSA: A gravitational search algorithm", Inf. Sci. (Ny)., 179(13), 2232-2248. https://doi.org/10.1016/j.ins.2009.03.004.
  45. Rezaie-balf, M., Naganna, S.R., Ghaemi, A. and Deka, P.C. (2017), "Wavelet coupled MARS and M5 Model Tree approaches for groundwater level forecasting", J. Hydrol., 553, 356-373. https://doi.org/10.1016/j.jhydrol.2017.08.006.
  46. Saha, P., Debnath, P. and Thomas, P. (2020), "Prediction of fresh and hardened properties of self-compacting concrete using support vector regression approach", Neur. Comput. Appl., 32(12), 7995-8010. https://doi.org/10.1007/s00521-019-04267-w.
  47. Sattar, A.A., Elhakeem, M., Rezaie-Balf, M., Gharabaghi, B. and Bonakdari, H. (2019), "Artificial intelligence models for prediction of the aeration efficiency of the stepped weir", Flow Meas. Instrum., 65, 78-89. https://doi.org/10.1016/j.flowmeasinst.2018.11.017.
  48. Sattar, A.M.A. and Gharabaghi, B. (2015), "Gene expression models for prediction of longitudinal dispersion coefficient in streams", J. Hydrol., 524, 587-596. https://doi.org/10.1016/j.jhydrol.2015.03.016.
  49. Siddique, R. (2011), "Properties of self-compacting concrete containing class F fly ash", Mater. Des., 32(3), 1501-1507. https://doi.org/10.1016/j.matdes.2010.08.043.
  50. Siddique, Y., Aggarwal, R. and Aggarwal, P. (2012), "Influence of water/powder ratio on strength properties of self-compacting concrete containing coal fly ash and bottom ash", Constr. Build. Mater., 29, 73-81. https://doi.org/10.1016/j.conbuildmat.2011.10.035.
  51. Sonebi, M., Cevik, A., Grunewald, S. and Walraven, J. (2016), "Modelling the fresh properties of self-compacting concrete using support vector machine approach", Constr. Build. Mater., 106, 55-64. https://doi.org/10.1016/j.conbuildmat.2015.12.035.
  52. Suykens, J.A.K. and Vandewalle, J. (1999), "Least squares support vector machine classifiers", Neur.l Proc. Lett., 9(3), 293-300. https://doi.org/10.1023/A:1018628609742.
  53. Tang, W.C., Wang, Z., Liu, Y. and Cui, H.Z. (2018), "Influence of red mud on fresh and hardened properties of self-compacting concrete", Constr. Build. Mater., 178, 288-300. https://doi.org/10.1016/j.conbuildmat.2018.05.171.
  54. Ting, T.Z.H., Rahman, M.E., Lau, H.H. and Ting, M.Z.Y. (2019), "Recent development and perspective of lightweight aggregates based self-compacting concrete", Constr. Build. Mater., 201, 763-777. https://doi.org/10.1016/j.conbuildmat.2018.12.128.
  55. Uysal, M. and Yilmaz, K. (2011), "Effect of mineral admixtures on properties of self-compacting concrete", Cement Concrete Compos., 33(7), 771-776. https://doi.org/10.1016/j.cemconcomp.2011.04.005.
  56. Uysal, M., Yilmaz, K. and Ipek, M. (2012), "The effect of mineral admixtures on mechanical properties, chloride ion permeability and impermeability of self-compacting concrete", Constr. Build. Mater., 27(1), 263-270. https://doi.org/10.1016/j.conbuildmat.2011.07.049.
  57. Vakhshouri, B. and Nejadi, S. (2018), "Prediction of compressive strength of self-compacting concrete by ANFIS models", Neurocomput., 280, 13-22. https://doi.org/10.1016/j.neucom.2017.09.099.
  58. Valizadeh, A., Aslani, F., Asif, Z. and Roso, M. (2019), "Development of heavyweight self-compacting concrete and ambient-cured heavyweight geopolymer concrete using magnetite aggregates", Mater. (Basel)., 12(7), 1035. https://doi.org/10.3390/ma12071035.
  59. Vivek, S.S. and Dhinakaran, G. (2017), "Fresh and hardened properties of binary blend high strength self compacting concrete", Eng. Sci. Technol. Int. J., 20(3), 1173-1179. https://doi.org/10.1016/j.jestch.2017.05.003.
  60. Wang, B., Man, T. and Jin, H. (2015), "Prediction of expansion behavior of self-stressing concrete by artificial neural networks and fuzzy inference systems", Constr. Build. Mater., 84, 184-191. https://doi.org/10.1016/j.conbuildmat.2015.03.059.
  61. Wang, Y., Gao, S., Zhou, M. and Yu, Y. (2020), "A multi-layered gravitational search algorithm for function optimization and real-world problems", IEEE/CAA J. Autom. Sinica, 8(1), 94-109. https://doi.org/10.1109/JAS.2020.1003462.
  62. Zhang, W.G. and Goh, A.T.C. (2013), "Multivariate adaptive regression splines for analysis of geotechnical engineering systems", Comput. Geotech., 48, 82-95. https://doi.org/10.1016/j.compgeo.2012.09.016.