DOI QR코드

DOI QR Code

Vibration analysis of graphene platelet reinforced stadium architectural roof shells subjected to large deflection

  • Abeer Qasim Jbur (Department of Architectural Engineering, Al-Mustansiriyah University) ;
  • Wael Najm Abdullah (Department of Architectural Engineering, Al-Mustansiriyah University) ;
  • Nadhim M. Faleh (Engineering Collage, Al-Mustansiryah University) ;
  • Zahraa N. Faleh (Department of Architectural Engineering, University of Baghdad)
  • Received : 2022.07.04
  • Accepted : 2022.12.28
  • Published : 2023.04.25

Abstract

In the present work, the vibration characteristics of sandwich nanocomposite shells, fortified with graphene platelets (GPLs) have been researched. The shell has been considered as the stadium roof shape with double curvatures under vibration due to earthquake. The nanocomposite has the matrix of concrete which is fortified with uniform or linear dispersions of GPLs. Also, the core possesses cellular type square architecture for which the effective elastic modulus has been defined in the context of relative density based relations. Based upon the classic shell strains containing two identical curvatures, the governing equations have been established and solved through differential quadrature approach. It will be seen that the vibrational frequencies rely on the core relative density, height of layers, the amount and dispersions of GPLs and even shell geometric parameters.

Keywords

Acknowledgement

The authors would like to thank Mustansiriyah university (www.uomustansiriyah.edu.iq) and university of Baghdad, Baghdad-Iraq for their support in the present work.

References

  1. Abazid, M.A., Zenkour, A.M. and Sobhy, M. (2020), "Wave propagation in FG porous GPLs-reinforced nanoplates under in-plane mechanical load and Lorentz magnetic force via a new quasi 3D plate theory", Mech. Bas. Des. Struct. Mach., 50(5), 1831-1850. https://doi.org/10.1080/15397734.2020.1769651.
  2. Ahankari, S.S and Kar, K.K. (2010), "Hysteresis measurements and dynamic mechanical characterization of functionally graded natural rubber-carbon black composites", Polym. Eng. Sci., 50(5), 871-877. https://doi.org/10.1002/pen.21601.
  3. Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng., 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175.
  4. Al-Maliki, A.F., Faleh, N.M. and Alasadi, A.A. (2019), "Finite element formulation and vibration of nonlocal refined metal foam beams with symmetric and non-symmetric porosities", Struct. Monit. Mainten., 6(2), 147-159. https://doi.org/10.12989/smm.2019.6.2.147.
  5. Al-Toki, M.H., Ali, H.A., Ahmed, R.A., Faleh, N.M. and Fenjan, R.M. (2022), "A numerical study on vibration behavior of fiber-reinforced composite panels in thermal environments", Struct. Eng. Mech., 82(6), 691-699. https://doi.org/10.12989/sem.2022.82.6.691.
  6. Barati, M.R. (2017), "Nonlocal-strain gradient forced vibration analysis of metal foam nanoplates with uniform and graded porosities", Adv. Nano Res., 5(4), 393-414. https://doi.org/10.12989/anr.2017.5.4.393.
  7. Barati, M.R. and Zenkour, A.M. (2018), "Analysis of postbuckling of graded porous GPL-reinforced beams with geometrical imperfection", Mech. Adv. Mater. Struct., 26(6), 503-511. https://doi.org/10.1080/15376494.2017.1400622.
  8. Barati, M.R. and Zenkour, A.M. (2019). Vibration analysis of functionally graded graphene platelet reinforced cylindrical shells with different porosity distributions", Mech. Adv. Mater. Struct., 26(18), 1580-1588. https://doi.org/10.1080/15376494.2018.1444235.
  9. Du, H., Gao, H.J. and Dai Pang, S. (2016), "Improvement in concrete resistance against water and chloride ingress by adding graphene nanoplatelet", Cement Concrete Res., 83, 114-123. https://doi.org/10.1016/j.cemconres.2016.02.005.
  10. Esawi, A.M.K., Morsi, K., Sayed, A., Taher, M and Lanka, S. (2011), "The influence of carbon nanotube (CNT) morphology and diameter on the processing and properties of CNT-reinforced aluminium composites", Compos. Part A: Appl. Sci. Manuf., 42(3), 234-243. https://doi.org/10.1016/j.compositesa.2010.11.008.
  11. Faleh, N.M., Abboud, I.K. and Nori, A.F. (2020). Nonlinear stability of smart nonlocal magneto-electro-thermo-elastic beams with geometric imperfection and piezoelectric phase effects", Smart Struct. Syst., 25(6), 707-717. https://doi.org/10.12989/sss.2020.25.6.707.
  12. Fang, M., Wang, K., Lu, H., Yang, Y. and Nutt, S. (2009). Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites", J. Mater. Chem., 19(38), 7098-7105. https://doi.org/10.1039/B908220D.
  13. Fenjan, R.M., Ahmed, R.A., Alasadi, A.A. and Faleh, N.M. (2019), "Nonlocal strain gradient thermal vibration analysis of double-coupled metal foam plate system with uniform and nonuniform porosities", Couple. Syst. Mech., 8(3), 247-257. https://doi.org/10.12989/csm.2019.8.3.247.
  14. Feng, C., Kitipornchai, S. and Yang, J. (2017), "Nonlinear free vibration of functionally graded polymer composite beams reinforced with graphene nanoplatelets (GPLs)", Eng. Struct., 140, 110-119. https://doi.org/10.1016/j.engstruct.2017.02.052.
  15. Gojny, F.H., Wichmann, M.H.G., Kopke, U., Fiedler, B and Schulte, K. (2004), "Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content", Compos. Sci. Technol., 64(15), 2363-2371. https://doi.org/10.1016/j.compscitech.2004.04.002.
  16. King, J.A., Klimek, D.R., Miskioglu, I. and Odegard, G.M. (2013), "Mechanical properties of graphene nanoplatelet/epoxy composites", J. Appl. Polym. Sci., 128(6), 4217-4223. https://doi.org/10.1002/app.38645.
  17. Kitipornchai, S., Chen, D. and Yang, J. (2017), "Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets", Mater. Des., 116, 656-665. https://doi.org/10.1016/j.matdes.2016.12.061.
  18. Lal, A. and Markad, K. (2018), "Deflection and stress behaviour of multi-walled carbon nanotube reinforced laminated composite beams", Comput. Concrete, 22(6), 501-514. https://doi.org/10.12989/cac.2018.22.6.501.
  19. Liew, K.M., Lei, Z.X. and Zhang, L.W. (2015), "Mechanical analysis of functionally graded carbon nanotube reinforced composites: a review", Compos. Struct., 120, 90-97. https://doi.org/10.1016/j.compstruct.2014.09.041.
  20. Lin, F., Yang, C., Zeng, Q.H and Xiang, Y. (2018), "Morphological and mechanical properties of graphene-reinforced PMMA nanocomposites using a multiscale analysis", Comput. Mater. Sci., 150, 107-120. https://doi.org/10.1016/j.commatsci.2018.03.048.
  21. Metwally, I.M. (2014), "Three-dimensional finite element analysis of reinforced concrete slabs strengthened with epoxy-bonded steel plates", Adv. Concrete Constr., 2(2), 91. https://doi.org/10.12989/acc.2014.2.2.091.
  22. Mirjavadi, S.S., Forsat, M., Mollaee, S., Barati, M.R., Afshari, B.M. and Hamouda, A.M.S. (2020a), "Post-buckling analysis of geometrically imperfect nanoparticle reinforced annular sector plates under radial compression", Comput. Concrete, 26(1), 21-30. https://doi.org/10.12989/cac.2020.26.1.021.
  23. Mirjavadi, S. S., Forsat, M., Barati, M. R. and Hamouda, A. M. S. (2020b), "Assessment of transient vibrations of graphene oxide reinforced plates under pulse loads using finite strip method", Comput. Concrete, 25(6), 575-585. https://doi.org/10.12989/cac.2020.25.6.575.
  24. Mohammed, A., Sanjayan, J.G., Nazari, A. and Al-Saadi, N.T.K. (2017), "Effects of graphene oxide in enhancing the performance of concrete exposed to high-temperature", Austr. J. Civil Eng., 15(1), 61-71. https://doi.org/10.1080/14488353.2017.1372849.
  25. Nieto, A., Bisht, A., Lahiri, D., Zhang, C. and Agarwal, A. (2017), "Graphene reinforced metal and ceramic matrix composites: A review", Int. Mater. Rev., 62(5), 241-302. https://doi.org/10.1080/09506608.2016.1219481.
  26. Rafiee, M.A., Rafiee, J., Wang, Z., Song, H., Yu, Z.Z. and Koratkar, N. (2009), "Enhanced mechanical properties of nanocomposites at low graphene content", ACS nano, 3(12), 3884-3890. https://doi.org/10.1021/nn9010472.
  27. Rezaiee-Pajand, M., Masoodi, A.R. and Mokhtari, M. (2018), "Static analysis of functionally graded non-prismatic sandwich beams", Adv. Comput. Des., 3(2), 165-190. https://doi.org/10.12989/acd.2018.3.2.165.
  28. Shamsaei, E., de Souza, F.B., Yao, X., Benhelal, E., Akbari, A. and Duan, W. (2018), "Graphene-based nanosheets for stronger and more durable concrete: A review", Constr. Build. Mater., 183, 642-660. https://doi.org/10.1016/j.conbuildmat.2018.06.201.
  29. Shen, H.S., Xiang, Y., Lin, F. and Hui, D. (2017), "Buckling and postbuckling of functionally graded graphene-reinforced composite laminated plates in thermal environments", Compos. Part B: Eng., 119, 67-78. https://doi.org/10.1016/j.compositesb.2017.03.020.
  30. SoFi Stadium (2022), California, United States. https://www.schuff.com/project/sofi-stadium/.
  31. Song, M., Kitipornchai, S. and Yang, J. (2017), "Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets", Compos. Struct., 159, 579-588. https://doi.org/10.1016/j.compstruct.2016.09.070.
  32. Wang, Z.X. and Shen, H.S. (2012), "Nonlinear vibration and bending of sandwich plates with nanotube-reinforced composite face sheets", Compos. Part B: Eng., 43(2), 411-421. https://doi.org/10.1016/j.compositesb.2011.04.040.
  33. Wang, L. and Su, R.K.L. (2013), "A unified design procedure for preloaded rectangular RC columns strengthened with post-compressed plates", Adv. Concrete Constr., 1(2), 163. https://doi.org/10.12989/acc.2013.1.2.163.
  34. Yang, B., Yang, J. and Kitipornchai, S. (2017), "Thermoelastic analysis of functionally graded graphene reinforced rectangular plates based on 3D elasticity", Meccanica, 52(10), 2275-2292. https://doi.org/10.1007/s11012-016-0579-8.
  35. Zaheer, M.M., Jafri, M.S. and Sharma, R. (2019), "Effect of diameter of MWCNT reinforcements on the mechanical properties of cement composites", Adv. Concrete Constr., 8(3), 207-215. https://doi.org/10.12989/acc.2019.8.3.207.
  36. Zhang, L.W. (2017), "On the study of the effect of in-plane forces on the frequency parameters of CNT-reinforced composite skew plates", Compos. Struct., 160, 824-837. https://doi.org/10.1016/j.compstruct.2016.10.116.
  37. Zhang, Z., Li, Y., Wu, H., Zhang, H., Wu, H., Jiang, S. and Chai, G. (2020), "Mechanical analysis of functionally graded graphene oxide-reinforced composite beams based on the first-order shear deformation theory", Mech. Adv. Mater. Struct., 27, 3-11. https://doi.org/10.1080/15376494.2018.1444216.