Acknowledgement
This study was Cosmetic safety evaluation project carried out by the Korea Cosmetic Industry Institute (KCII) funded by the Ministry of Health and Welfare and the Korea Environment Industry and Technology Institute (KEITI) funded by Korea Ministry of Environment (MOE) (2021002970001, 1485017976).
References
- Gallegos Saliner A, Tsakovska I, Pavan M, Patlewicz G, Worth AP, Research QiE (2007) Evaluation of SARs for the prediction of skin irritation/corrosion potential-structural inclusion rules in the BfR decision support system. SAR 18:331-342. https://doi.org/10.1080/10629360701304014
- OECD (2015) Test guideline no. 404: acute dermal irritation/corrosion. OECD guidelines for the testing of chemicals. Organisation for Economic Cooperation and Development, Paris. https://doi.org/10.1787/9789264070622
- OECD (2021) Test no. 439: in vitro skin irritation: reconstructed human epidermis test method. Organisation for Economic Cooperation and Development, Paris. https://doi.org/10.1787/20745788
- OECD (2019) Test no. 431: In vitro skin corrosion: reconstructed human epidermis (RHE) test method. Organisation for Economic Cooperation and Development, Paris. https://doi.org/10.1787/20745788
- Desprez B, Barroso J, Griesinger C, Kandarova H, Alepee N, Fuchs HW (2015) Two novel prediction models improve predictions of skin corrosive sub-categories by test methods of OECD test guideline no. 431. Toxicol In Vitro 29:2055-2080. https://doi.org/10.1016/j.tiv.2015.08.015
- Ball N, Cronin MT, Shen J, Blackburn K, Booth ED, Bouhifd M, Donley E, Egnash L, Hastings C, Juberg DR (2016) T4 report: toward good read-across practice (GRAP) guidance. Altex 33:149. https://doi.org/10.14573/altex.1601251
- Patlewicz G, Ball N, Booth ED, Hulzebos E, Zvinavashe E, Hennes C (2013) Use of category approaches, read-across and (Q) SAR: general considerations. Regul Pharmacol Toxicol 67:1-12. https://doi.org/10.1016/j.yrtph.2013.06.002
- Saliner AG, Worth AP (2007) Testing strategies for the prediction of skin and eye irritation and corrosion for regulatory purposes: Publications Ofce of the European Union. https://doi.org/10.2788/64337
- Benfenati E, Chaudhry Q, Gini G, Dorne JL (2019) Integrating in silico models and read-across methods for predicting toxicity of chemicals: a step-wise strategy. Environ Int 131:105060. https://doi.org/10.1016/j.envint.2019.105060
- Raies AB, Bajic VB (2016) In silico toxicology: computational methods for the prediction of chemical toxicity. Wiley Interdiscip Rev Comput Mol Sci 6:147-172. https://doi.org/10.1002/wcms.1240
- Organisation for Economic Co-operation and Development (2014) Guidance document on the validation of (quantitative) structure-activity relationship [(Q) SAR] models. Organisation for Economic Co-operation and Development. https://doi.org/10.1787/9789264085442-en
- Verheyen GR, Braeken E, Van Deun K, Van Miert S (2017) Evaluation of existing (Q) SAR models for skin and eye irritation and corrosion to use for REACH registration. Toxicol Lett 265:47-52. https://doi.org/10.1016/j.toxlet.2016.11.007
- Marchant CA, Briggs KA, Long A (2008) In silico tools for sharing data and knowledge on toxicity and metabolism: Derek for windows, meteor, and vitic. Toxicol Mech Methods 18:177-187. https://doi.org/10.1080/15376510701857320
- Hulzebos E, Walker JD, Gerner I, Schlegel K (2005) Use of structural alerts to develop rules for identifying chemical substances with skin irritation or skin corrosion potential. QSAR Combina Sci 24:332-342. https://doi.org/10.1002/qsar.200430905
- Han J, Lee G-Y, Bae G, Kang M-J, Lim K-M (2021) Chemskin reference chemical database for the development of an in vitro skin irritation test. Toxics 9:314. https://doi.org/10.3390/toxics9110314
- Schober P, Vetter TR, Analgesia (2020) Linear regression in medical research. Anesthesia 132:108. https://doi.org/10.1213/ANE.0000000000005206
- Vetter TR, Schober P, Analgesia (2018) Regression: the apple does not fall far from the tree. Anesthesia 127:277-283. https://doi.org/10.1213/ane.0000000000003424
- Berger JO (2013) Statistical decision theory and Bayesian analysis. Springer Science & Business Media, Berlin. https://doi.org/10.1007/978-1-4757-4286-2_4
- Altman NS (1992) An introduction to kernel and nearest-neighbor nonparametric regression. Am Stat 46:175-185. https://doi.org/10.1080/00031305.1992.10475879
- Huang S, Cai N, Pacheco PP, Narrandes S, Wang Y, Xu W (2018) Applications of support vector machine (SVM) learning in cancer genomics. Cancer Genom Proteom 15:41-51. https://doi.org/10.21873/cgp.20063
- Noble WS (2006) What is a support vector machine? Nat Biotechnol 24:1565-1567. https://doi.org/10.1038/nbt1206-1565
- Pellegrino E, Jacques C, Beaufils N, Nanni I, Carlioz A, Metellus P, Ouafik Lh (2021) Machine learning random forest for predicting oncosomatic variant NGS analysis. Sci Rep 11:1-14. https://doi.org/10.1038/s41598-021-01253-y
- Noh B, Youm C, Goh E, Lee M, Park H, Jeon H, Kim OY (2021) XGBoost based machine learning approach to predict the risk of fall in older adults using gait outcomes. Sci Rep 11:1-9. https://doi.org/10.1038/s41598-021-91797-w
- Chen T, Guestrin C (2016) Xgboost: a scalable tree boosting system. In: Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, pp 785-794. https://doi.org/10.1145/2939672.2939785
- Kriegeskorte N, Golan T (2019) Neural network models and deep learning. Curr Biol 29:R231-R236. https://doi.org/10.1016/j.cub.2019.02.034
- Silva AC, Borba JV, Alves VM, Hall SU, Furnham N, Kleinstreuer N, Muratov E, Tropsha A, Andrade CH (2021) Novel computational models offer alternatives to animal testing for assessing eye irritation and corrosion potential of chemicals. Artif Intell Life Sci 1:100028. https://doi.org/10.1016/j.ailsci.2021.100028
- Ying G-S, Maguire MG, Glynn RJ, Rosner B (2020) Calculating sensitivity, specificity, and predictive values for correlated eye data. Investig Ophthalmol Vis Sci 61:29-29. https://doi.org/10.1167/iovs.61.11.29
- Akbar NA, Sunyoto A, Arief MR, and Caesarendra W (2020) Improvement of decision tree classifer accuracy for healthcare insurance fraud prediction by using extreme gradient boosting algorithm. In: 2020 international conference on informatics, multimedia, cyber and information system (ICIMCIS). IEEE, pp 110-114. https://doi.org/10.1109/ICIMCIS51567.2020.9354286
- Wang F, Ross CL (2018) Machine learning travel mode choices: comparing the performance of an extreme gradient boosting model with a multinomial logit model. Transp Res Rec 2672:35-45. https://doi.org/10.1177/0361198118773556
- Bae SY, Lee J, Jeong J, Lim C, Choi J (2021) Efective data-balancing methods for class-imbalanced genotoxicity datasets using machine learning algorithms and molecular fngerprints. Comput Toxicol 20:100178. https://doi.org/10.1016/j.comtox.2021.100178
- Shi Z, Chu Y, Zhang Y, Wang Y, Wei D-Q (2020) Prediction of blood-brain barrier permeability of compounds by fusing resampling strategies and extreme gradient boosting. IEEE Access 9:9557-9566. https://doi.org/10.1109/ACCESS.2020.3047852
- Feng H, Zhang L, Li S, Liu L, Yang T, Yang P, Zhao J, Arkin IT, Liu H (2021) Predicting the reproductive toxicity of chemicals using ensemble learning methods and molecular fingerprints. Toxicol Lett 340:4-14. https://doi.org/10.1016/j.toxlet.2021.01.002
- Macfarlane M, Jones P, Goebel C, Dufour E, Rowland J, Araki D, Costabel-Farkas M, Hewitt NJ, Hibatallah J, Kirst AJRT (2009) A tiered approach to the use of alternatives to animal testing for the safety assessment of cosmetics: skin irritation. Regul Toxicol Pharmacol 54:188-196. https://doi.org/10.1016/j.yrtph.2009.04.003
- Gallegos Saliner A, Tsakovska I, Pavan M, Patlewicz G, Worth A (2007) Evaluation of SARs for the prediction of skin irritation/corrosion potential-structural inclusion rules in the BfR decision support system. SAR QSAR Environ Res 18:331-342. https://doi.org/10.1080/10629360701304014
- Mombelli E (2008) An evaluation of the predictive ability of the QSAR software packages, DEREK, HAZARDEXPERT and TOPKAT, to describe chemically-induced skin irritation. Altern Lab Anim 36:15-24. https://doi.org/10.1177/026119290803600104
- Tsakovska I, Saliner AG, Netzeva T, Pavan M, Worth A (2007) Evaluation of SARs for the prediction of eye irritation/corrosion potential-structural inclusion rules in the BfR decision support system. SAR QSAR Environ Res 18:221-235. https://doi.org/10.1080/10629360701304063
- Musa AY, Jalgham RT, Mohamad AB (2012) Molecular dynamic and quantum chemical calculations for phthalazine derivatives as corrosion inhibitors of mild steel in 1 M HCl. Corros Sci 56:176-183. https://doi.org/10.1016/j.corsci.2011.12.005
- Usha T, Tripathi P, Pande V, Middha SK (2013) Molecular docking and quantum mechanical studies on pelargonidin-3-glucoside as renoprotective ACE inhibitor. Int Sch Res Not 2013:428378. https://doi.org/10.1155/2013/428378
- Eddy NO, Essien NB (2017) Computational chemistry study of toxicity of some m-tolyl acetate derivatives insecticides and molecular design of structurally related products. In Silico Pharmacol 5:1-17. https://doi.org/10.1007/s40203-017-0036-y
- Ferguson J (1939) The use of chemical potentials as indices of toxicity. Proc R Soc Lond Ser B Biol Sci 127:387-404. https://doi.org/10.1098/rspb.1939.0030
- Kehrer JP (2000) The Haber-Weiss reaction and mechanisms of toxicity. Toxicology 149:43-50. https://doi.org/10.1016/S0300-483X(00)00231-6
- Lyakurwa F, Yang X, Li X, Qiao X, Chen J (2014) Development and validation of theoretical linear solvation energy relationship models for toxicity prediction to fathead minnow (Pimephales promelas). Chemosphere 96:188-194. https://doi.org/10.1016/j.chemosphere.2013.10.039
- Bakire S, Yang X, Ma G, Wei X, Yu H, Chen J, Lin H (2018) Developing predictive models for toxicity of organic chemicals to green algae based on mode of action. Chemosphere 190:463-470. https://doi.org/10.1016/j.chemosphere.2017.10.028
- Ameh PO, Eddy NO (2016) Theoretical and experimental studies on the corrosion inhibition potentials of 3-nitrobenzoic acid for mild steel in 0.1 M H2SO4. Cogent Chem 2:1253904. https://doi.org/10.1080/23312009.2016.1253904