DOI QR코드

DOI QR Code

Characterization of complement C3 as a marker of alpha-amanitin toxicity by comparative secretome profiling

  • Doeun Kim (BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University) ;
  • Min Seo Lee (BK21 Four-sponsored Advanced Program for SmartPharma Leaders, College of Pharmacy, The Catholic University of Korea) ;
  • Hyunchae Sim (BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University) ;
  • Sangkyu Lee (BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University) ;
  • Hye Suk Lee (BK21 Four-sponsored Advanced Program for SmartPharma Leaders, College of Pharmacy, The Catholic University of Korea)
  • Received : 2022.09.19
  • Accepted : 2022.11.28
  • Published : 2023.04.15

Abstract

In the human body, proteins secreted into peripheral blood vessels are known as the secretome, and they represent the physiological or pathological status of cells. The unique response of cells to toxin exposure can be confirmed via secretome analysis, which can be used to discover toxic mechanisms or exposure markers. Alpha-amanitin (α-AMA) is the most widely studied amatoxin and inhibits transcription and protein synthesis by directly interacting with RNA polymerase II. However, secretory proteins released during hepatic failure caused by α-AMA have not been fully characterized. In this study, we analyzed the secretome of α-AMA-treated Huh-7 cells and mice using a comparative proteomics technique. Overall, 1440 and 208 proteins were quantified in cell media and mouse serum, respectively. Based on the bioinformatics results for the commonly downregulated proteins in cell media and mouse serum, we identified complement component 3 (C3) as a marker for α-AMA-induced hepatotoxicity. Through western blot in cell secretome and C3 ELISA assays in mouse serum, we validated α-AMA-induced downregulation of C3. In conclusion, using comparative proteomics and molecular biology techniques, we found that α-AMA-induced hepatotoxicity reduced C3 levels in the secretome. We expect that this study will aid in identifying new toxic mechanisms, therapeutic targets, and exposure markers of α-AMA-induced hepatotoxicity.

Keywords

Acknowledgement

This research was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIT) (Grant no. 2020R1A2C2008461) and by Basic Science Research Program through the NRF funded by the Korea government (MOE) (Grant no. 2020R1A6A3A13066285).

References

  1. Disdier M, Morrissey JH, Fugate RD, Bainton DF, McEver RP (1992) Cytoplasmic domain of P-selectin (CD62) contains the signal for sorting into the regulated secretory pathway. Mol Biol Cell 3:309-321. https://doi.org/10.1091/mbc.3.3.309
  2. Blobel G (1980) Intracellular protein topogenesis. Proc Natl Acad Sci U S A 77:1496-1500. https://doi.org/10.1073/pnas.77.3.1496
  3. Uhlen M, Karlsson MJ, Hober A, Svensson AS, Scheffel J, Kotol D, Zhong W, Tebani A, Strandberg L, Edfors F, Sjostedt E, Mulder J, Mardinoglu A, Berling A, Ekblad S, Dannemeyer M, Kanje S, Rockberg J, Lundqvist M, Malm M, Volk AL, Nilsson P, Manberg A, Dodig-Crnkovic T, Pin E, Zwahlen M, Oksvold P, von Feilitzen K, Haussler RS, Hong MG, Lindskog C, Ponten F, Katona B, Vuu J, Lindstrom E, Nielsen J, Robinson J, Ayoglu B, Mahdessian D, Sullivan D, Thul P, Danielsson F, Stadler C, Lundberg E, Bergstrom G, Gummesson A, Voldborg BG, Tegel H, Hober S, Forsstrom B, Schwenk JM, Fagerberg L, Sivertsson A (2019) The human secretome. Sci Signal 12:eaaz0274. https://doi.org/10.1126/scisignal.aaz0274
  4. Wang T, Hay JC (2015) Alpha-synuclein toxicity in the early secretory pathway: how it drives neurodegeneration in Parkinsons disease. Front Neurosci 9:433. https://doi.org/10.3389/fnins.2015.00433
  5. Blangy-Letheule A, Persello A, Michelland S, Cunin V, Souab F, Aillerie V, Dhot J, Erraud A, Montnach J, Seve M, Bourgoin-Voillard S, Rozec B, De Waard M, Lauzier B (2021) The secretome deregulations in a rat model of endotoxemic shock. Oxid Med Cell Longev 2021:6650464. https://doi.org/10.1155/2021/6650464
  6. Le Dare B, Ferron PJ, Gicquel T (2021) Toxic effects of amanitins: repurposing toxicities toward new therapeutics. Toxins (Basel) 13:417. https://doi.org/10.3390/toxins13060417
  7. Tavassoli M, Afshari A, Arsene AL, Megarbane B, Dumanov J, Paoliello MMB, Tsatsakis A, Carvalho F, Hashemzaei M, Karimi G, Rezaee R (2019) Toxicological profle of Amanita virosa-a narrative review. Toxicol Rep 6:143-150. https://doi.org/10.1016/j.toxrep.2019.01.002
  8. Govorushko S, Rezaee R, Dumanov J, Tsatsakis A (2019) Poisoning associated with the use of mushrooms: a review of the global pattern and main characteristics. Food Chem Toxicol 128:267-279. https://doi.org/10.1016/j.fct.2019.04.016
  9. Garcia J, Costa VM, Carvalho A, Baptista P, de Pinho PG, de Lourdes Bastos M, Carvalho F (2015) Amanita phalloides poisoning: mechanisms of toxicity and treatment. Food Chem Toxicol 86:41-55. https://doi.org/10.1016/j.fct.2015.09.008
  10. Vetter J (1998) Toxins of Amanita phalloides. Toxicon 36:13-24. https://doi.org/10.1016/s0041-0101(97)00074-3
  11. Baumann K, Zanotti G, Faulstich H (1994) A beta-turn in alpha-amanitin is the most important structural feature for binding to RNA polymerase II and three monoclonal antibodies. Protein Sci 3:750-756. https://doi.org/10.1002/pro.5560030504
  12. Kim D, Lee MS, Sung E, Lee S, Lee HS (2022) Characterization of the RAS/RAF/ERK signal cascade as a novel regulating factor in alpha-amanitin-induced cytotoxicity in Huh-7 cells. Int J Mol Sci 23:12294. https://doi.org/10.3390/ijms232012294
  13. Tyanova S, Temu T, Cox J (2016) The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat Protoc 11:2301-2319. https://doi.org/10.1038/nprot.2016.136
  14. Perez-Riverol Y, Bai J, Bandla C, Garcia-Seisdedos D, Hewapathirana S, Kamatchinathan S, Kundu DJ, Prakash A, Frericks-Zipper A, Eisenacher M, Walzer M, Wang S, Brazma A, Vizcaino JA (2022) The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res 50:D543-D552. https://doi.org/10.1093/nar/gkab1038
  15. Sherman BT, Hao M, Qiu J, Jiao X, Baseler MW, Lane HC, Imamichi T, Chang W (2022) DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res 50:W216-W221. https://doi.org/10.1093/nar/gkac194
  16. Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, Doncheva NT, Legeay M, Fang T, Bork P, Jensen LJ, von Mering C (2021) The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res 49:D605-D612. https://doi.org/10.1093/nar/gkaa1074
  17. Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, Mann M, Cox J (2016) The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods 13:731-740. https://doi.org/10.1038/nmeth.3901
  18. Wang M, Chen Y, Guo Z, Yang C, Qi J, Fu Y, Chen Z, Chen P, Wang Y (2018) Changes in the mitochondrial proteome in human hepatocytes in response to alpha-amanitin hepatotoxicity. Toxicon 156:34-40. https://doi.org/10.1016/j.toxicon.2018.11.002
  19. Magdalan J, Ostrowska A, Piotrowska A, Gomulkiewicz A, Podhorska-Okolow M, Patrzalek D, Szelag A, Dziegiel P (2010) Benzylpenicillin, acetylcysteine and silibinin as antidotes in human hepatocytes intoxicated with alpha-amanitin. Exp Toxicol Pathol 62:367-373. https://doi.org/10.1016/j.etp.2009.05.003
  20. Rodrigues DF, Pires das Neves R, Carvalho ATP, Lourdes Bastos M, Costa VM, Carvalho F (2020) In vitro mechanistic studies on alpha-amanitin and its putative antidotes. Arch Toxicol 94:2061-2078. https://doi.org/10.1007/s00204-020-02718-1
  21. Bang YY, Song IS, Lee MS, Lim CH, Cho YY, Lee JY, Kang HC, Lee HS (2022) Toxicokinetics of beta-amanitin in mice and in vitro drug-drug Interaction potential. Pharmaceutics 14:774. https://doi.org/10.3390/pharmaceutics14040774
  22. Jungnickel B, Rapoport TA (1995) A posttargeting signal sequence recognition event in the endoplasmic reticulum membrane. Cell 82:261-270. https://doi.org/10.1016/0092-8674(95)90313-5
  23. Muesch A, Hartmann E, Rohde K, Rubartelli A, Sitia R, Rapoport TA (1990) A novel pathway for secretory proteins? Trends Biochem Sci 15:86-88. https://doi.org/10.1016/0968-0004(90)90186-f
  24. Shaw AS, Rottier PJ, Rose JK (1988) Evidence for the loop model of signal-sequence insertion into the endoplasmic reticulum. Proc Natl Acad Sci U S A 85:7592-7596. https://doi.org/10.1073/pnas.85.20.7592
  25. Walter P, Gilmore R, Blobel G (1984) Protein translocation across the endoplasmic reticulum. Cell 38:5-8. https://doi.org/10.1016/0092-8674(84)90520-8
  26. Mellman I, Warren G (2000) The road taken: past and future foundations of membrane traffic. Cell 100:99-112. https://doi.org/10.1016/s0092-8674(00)81687-6
  27. Nickel W (2003) The mystery of nonclassical protein secretion. A current view on cargo proteins and potential export routes. Eur J Biochem 270:2109-2119. https://doi.org/10.1046/j.1432-1033.2003.03577.x
  28. Caruso JA, Stemmer PM (2018) Petroleum coke exposure leads to altered secretome profiles in human lung models. Hum Exp Toxicol 37:1215-1232. https://doi.org/10.1177/0960327118765326
  29. Brass DM, Gwinn WM, Valente AM, Kelly FL, Brinkley CD, Nagler AE, Moseley MA, Morgan DL, Palmer SM, Foster MW (2017) The diacetyl-exposed human airway epithelial secretome: new insights into flavoring-Induced airways disease. Am J Respir Cell Mol Biol 56:784-795. https://doi.org/10.1165/rcmb.2016-0372OC
  30. Afshar-Kharghan V (2017) The role of the complement system in cancer. J Clin Invest 127:780-789. https://doi.org/10.1172/JCI90962
  31. Thorgersen EB, Barratt-Due A, Haugaa H, Harboe M, Pischke SE, Nilsson PH, Mollnes TE (2019) The role of complement in Liver Injury, Regeneration, and transplantation. Hepatology 70:725-736. https://doi.org/10.1002/hep.30508
  32. Carroll MC (2004) The complement system in regulation of adaptive immunity. Nat Immunol 5:981-986. https://doi.org/10.1038/ni1113
  33. Rus H, Cudrici C, Niculescu F (2005) The role of the complement system in innate immunity. Immunol Res 33:103-112. https://doi.org/10.1385/IR:33:2:103
  34. Clark A, Weymann A, Hartman E, Turmelle Y, Carroll M, Thurman JM, Holers VM, Hourcade DE, Rudnick DA (2008) Evidence for non-traditional activation of complement factor C3 during murine liver regeneration. Mol Immunol 45:3125-3132. https://doi.org/10.1016/j.molimm.2008.03.008
  35. Strey CW, Markiewski M, Mastellos D, Tudoran R, Spruce LA, Greenbaum LE, Lambris JD (2003) The proinflammatory mediators C3a and C5a are essential for liver regeneration. J Exp Med 198:913-923. https://doi.org/10.1084/jem.20030374