DOI QR코드

DOI QR Code

Mitochondrial dynamics when mitochondrial toxic chemicals exposed in 3D cultured mouse embryonic stem cell

  • Changhwan Ahn (Laboratory of Veterinary Physiology, College of Veterinary Medicine, Jeju National University) ;
  • SunHwa Jeong (Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University) ;
  • Eui‑Bae Jeung (Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University)
  • Received : 2022.08.25
  • Accepted : 2022.11.28
  • Published : 2023.04.15

Abstract

Mitochondria need to use considerable energy for the intracellular organelles that produce ATP. They are abundant in the cells of organs, such as muscles, liver, and kidneys. The heart, which requires a lot of energy, is also rich in mitochondria. Mitochondrial damage can induce cell death. Doxorubicin, acetaminophen, valproic acid, amiodarone, and hydroxytamoxifen are representative substances that induce mitochondrial damage. On the other hand, the effects of this substance on the progress of cardiomyocyte-differentiating stem cells have not been investigated. Therefore, a 3D cultured embryonic body toxicity test was performed. The results confirmed that the cytotoxic effects on cardiomyocytes were due to mitochondrial damage in the stage of cardiomyocyte differentiation. After drug treatment, the cells were raised in the embryoid body state for four days to obtain the ID50 values, and the levels of mRNA expression associated with the mitochondrial complex were examined. The mitochondrial DNA copy numbers were also compared to prove that the substance affects the number of mitochondria in EB-state cardiomyocytes.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (no. 2021R1A2C2093275).

References

  1. Kim JI, Lee SY, Park M, Kim SY, Kim JW, Kim SA, Kim BN (2019) Peripheral mitochondrial DNA copy number is increased in korean attention-defcit hyperactivity disorder patients. Front Psychiatry 10:506. https://doi.org/10.3389/fpsyt.2019.00506
  2. Abdrakhmanova A, Zwicker K, Kerscher S, Zickermann V, Brandt U (2006) Tight binding of NADPH to the 39-kDa subunit of complex I is not required for catalytic activity but stabilizes the multiprotein complex. Biochim Biophys Acta 1757:1676-1682. https://doi.org/10.1016/j.bbabio.2006.09.003
  3. Acin-Perez R, Bayona-Bafaluy MP, Fernandez-Silva P, MorenoLoshuertos R, Perez-Martos A, Bruno C, Moraes CT, Enriquez JA (2004) Respiratory complex III is required to maintain complex I in mammalian mitochondria. Mol Cell 13:805-815. https://doi.org/10.1016/s1097-2765(04)00124-8
  4. Balsa E, Marco R, Perales-Clemente E, Szklarczyk R, Calvo E, Landazuri MO, Enriquez JA (2012) NDUFA4 is a subunit of complex IV of the mammalian electron transport chain. Cell Metab 16:378-386. https://doi.org/10.1016/j.cmet.2012.07.015
  5. Huang LS, Sun G, Cobessi D, Wang AC, Shen JT, Tung EY, Anderson VE, Berry EA (2006) 3-nitropropionic acid is a suicide inhibitor of mitochondrial respiration that, upon oxidation by complex II, forms a covalent adduct with a catalytic base arginine in the active site of the enzyme. J Biol Chem 281:5965-5972. https://doi.org/10.1074/jbc.M511270200
  6. Kucharczyk R, Zick M, Bietenhader M, Rak M, Couplan E, Blondel M, Caubet SD, di Rago JP (2009) Mitochondrial ATP synthase disorders: molecular mechanisms and the quest for curative therapeutic approaches. Biochim Biophys Acta 1793:186-199. https:// doi.org/10.1016/j.bbamcr.2008.06.012
  7. Atlante A, Amadoro G, Bobba A, de Bari L, Corsetti V, Pappalardo G, Marra E, Calissano P, Passarella S (2008) A peptide containing residues 26-44 of tau protein impairs mitochondrial oxidative phosphorylation acting at the level of the adenine nucleotide translocator. Biochim Biophys Acta 1777:1289-1300. https://doi.org/10.1016/j.bbabio.2008.07.004
  8. Moren C, Hernandez S, Guitart-Mampel M, Garrabou G (2014) Mitochondrial toxicity in human pregnancy: an update on clinical and experimental approaches in the last 10 years. Int J Environ Res Public Health 11:9897-9918. https://doi.org/10.3390/ijerph110909897
  9. Hu LL, Liao BY, Wei JX, Ling YL, Wei YX, Liu ZL, Luo XQ, Wang JL (2020) Podophyllotoxin exposure causes spindle defects and DNA damage-induced apoptosis in mouse fertilized oocytes and early embryos. Front Cell Dev Biol 8:600521. https://doi.org/10.3389/fcell.2020.600521
  10. Teh WT, McBain J, Rogers P (2016) What is the contribution of embryo-endometrial asynchrony to implantation failure? J Assist Reprod Genet 33:1419-1430. https://doi.org/10.1007/s10815-016-0773-6
  11. Khacho M, Clark A, Svoboda DS, MacLaurin JG, Lagace DC, Park DS, Slack RS (2017) Mitochondrial dysfunction underlies cognitive defects as a result of neural stem cell depletion and impaired neurogenesis. Hum Mol Genet 26:3327-3341. https://doi.org/10.1093/hmg/ddx217
  12. Jeong S, Park SM, Jo NR, Kwon JS, Lee J, Kim K, Go SM, Cai L, Ahn D, Lee SD, Hyun SH, Choi KC, Jeung EB (2022) Prevalidation of an alternative test method for prediction of developmental neurotoxicity. Food Chem Toxicol 164:113070. https://doi.org/10.1016/j.fct.2022.113070
  13. Lee JH, Park SY, Ahn C, Kim CW, Kim JE, Jo NR, Kang HY, Yoo YM, Jung EM, Kim EM, Kim KS, Choi KC, Lee SD, Jeung EB (2019) Pre-validation study of alternative developmental toxicity test using mouse embryonic stem cell-derived embryoid bodies. Food Chem Toxicol 123:50-56. https://doi.org/10.1016/j.fct.2018.10.044
  14. Lee JH, Park SY, Ahn C, Yoo YM, Kim CW, Kim JE, Jo NR, Kang HY, Jung EM, Kim KS, Choi KC, Lee SD, Jeung EB (2020) Second-phase validation study of an alternative developmental toxicity test using mouse embryonic stem cell-derived embryoid bodies. J Physiol Pharmacol 71:223-233. https://doi.org/10.26402/jpp.2020.2.06
  15. Murry CE, Keller G (2008) Diferentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 132:661-680. https://doi.org/10.1016/j.cell.2008.02.008
  16. Kang HY, Choi YK, Jo NR, Lee JH, Ahn C, Ahn IY, Kim TS, Kim KS, Choi KC, Lee JK, Lee SD, Jeung EB (2017) Advanced developmental toxicity test method based on embryoid body's area. Reprod Toxicol 72:74-85. https://doi.org/10.1016/j.reprotox.2017.06.185
  17. Toma-Jonik A, Vydra N, Janus P, Widlak W (2019) Interplay between HSF1 and p53 signaling pathways in cancer initiation and progression: non-oncogene and oncogene addiction. Cell Oncol (Dordr) 42:579-589. https://doi.org/10.1007/s13402-019-00452-0
  18. Rooney JP, Ryde IT, Sanders LH, Howlett EH, Colton MD, Germ KE, Mayer GD, Greenamyre JT, Meyer JN (2015) PCR based determination of mitochondrial DNA copy number in multiple species. Methods Mol Biol 1241:23-38. https://doi.org/10.1007/978-1-4939-1875-1_3
  19. Abdullaev S, Gubina N, Bulanova T, Gaziev A (2020) Assessment of nuclear and mitochondrial DNA, expression of mitochondriarelated genes in diferent brain regions in rats after whole-body X-ray irradiation. Int J Mol Sci 21:1196. https://doi.org/10.3390/ijms21041196
  20. Bordoni L, Smerilli V, Nasuti C, Gabbianelli R (2019) Mitochondrial DNA methylation and copy number predict body composition in a young female population. J Transl Med 17:399. https://doi.org/10.1186/s12967-019-02150-9
  21. Quiros PM, Goyal A, Jha P, Auwerx J (2017) Analysis of mtDNA/ nDNA ratio in mice. Curr Protoc Mouse Biol 7:47-54. https://doi.org/10.1002/cpmo.21
  22. Kim JI, Lee S-Y, Park M, Kim SY, Kim J-W, Kim SA, Kim B-N (2019) Peripheral mitochondrial DNA copy number is increased in Korean attention-defcit hyperactivity disorder patients. Front Psych 10:506. https://doi.org/10.3389/fpsyt.2019.00506
  23. Hartmann N, Reichwald K, Wittig I, Drose S, Schmeisser S, Luck C, Hahn C, Graf M, Gausmann U, Terzibasi E, Cellerino A, Ristow M, Brandt U, Platzer M, Englert C (2011) Mitochondrial DNA copy number and function decrease with age in the shortlived fsh Nothobranchius furzeri. Aging Cell 10:824-831. https://doi.org/10.1111/j.1474-9726.2011.00723.x
  24. Little AC, Kovalenko I, Goo LE, Hong HS, Kerk SA, Yates JA, Purohit V, Lombard DB, Merajver SD, Lyssiotis CA (2020) Highcontent fuorescence imaging with the metabolic fux assay reveals insights into mitochondrial properties and functions. Commun Biol 3:271. https://doi.org/10.1038/s42003-020-0988-z
  25. Hunt PR (2017) The C. elegans model in toxicity testing. J Appl Toxicol 37:50-59. https://doi.org/10.1002/jat.3357
  26. Baines RP, Wolton K, Thompson CRL (2021) Dictyostelium discoideum: an alternative nonanimal model for developmental toxicity testing. Toxicol Sci 183:302-318. https://doi.org/10.1093/toxsci/kfab097
  27. Lee HY, Inselman AL, Kanungo J, Hansen DK (2012) Alternative models in developmental toxicology. Syst Biol Reprod Med 58:10-22. https://doi.org/10.3109/19396368.2011.648302
  28. Tang W, Chen J, Wang Z, Xie H, Hong H (2018) Deep learning for predicting toxicity of chemicals: a mini review. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 36:252-271. https://doi.org/10.1080/10590501.2018.1537563
  29. Piersma AH (2006) Alternative methods for developmental toxicity testing. Basic Clin Pharmacol Toxicol 98:427-431. https://doi.org/10.1111/j.1742-7843.2006.pto_373.x
  30. Park SM, Jo NR, Lee B, Jung EM, Lee SD, Jeung EB (2021) Establishment of a developmental neurotoxicity test by Sox1-GFP mouse embryonic stem cells. Reprod Toxicol 104:96-105. https://doi.org/10.1016/j.reprotox.2021.07.004
  31. Jung EM, Choi YU, Kang HS, Yang H, Hong EJ, An BS, Yang JY, Choi KH, Jeung EB (2015) Evaluation of developmental toxicity using undiferentiated human embryonic stem cells. J Appl Toxicol 35:205-218. https://doi.org/10.1002/jat.3010
  32. Hong EJ, Choi Y, Yang H, Kang HY, Ahn C, Jeung EB (2015) Establishment of a rapid drug screening system based on embryonic stem cells. Environ Toxicol Pharmacol 39:327-338. https://doi.org/10.1016/j.etap.2014.12.003
  33. Kornicka-Garbowska K, Bourebaba L, Rocken M, Marycz K (2021) Inhibition of protein tyrosine phosphatase improves mitochondrial bioenergetics and dynamics, reduces oxidative stress, and enhances adipogenic diferentiation potential in metabolically impaired progenitor stem cells. Cell Commun Signal 19:106. https://doi.org/10.1186/s12964-021-00772-5
  34. Seo BJ, Yoon SH, Do JT (2018) Mitochondrial dynamics in stem cells and diferentiation. Int J Mol Sci 19:3893. https://doi.org/10.3390/ijms19123893
  35. Massart J, Borgne-Sanchez A, Fromenty B (2018) Drug-induced mitochondrial toxicity. Springer, Cham
  36. Wallace KB, Sardao VA, Oliveira PJ (2020) Mitochondrial determinants of doxorubicin-induced cardiomyopathy. Circ Res 126:926-941. https://doi.org/10.1161/circresaha.119.314681
  37. Ramachandran A, Jaeschke H (2020) A mitochondrial journey through acetaminophen hepatotoxicity. Food Chem Toxicol 140:111282. https://doi.org/10.1016/j.fct.2020.111282
  38. Caiment F, Wolters J, Smit E, Schrooders Y, Kleinjans J, van den Beucken T (2020) Valproic acid promotes mitochondrial dysfunction in primary human hepatocytes in vitro; impact of C/EBPalpha-controlled gene expression. Arch Toxicol 94:3463-3473. https://doi.org/10.1007/s00204-020-02835-x
  39. Nazarewicz RR, Zenebe WJ, Parihar A, Larson SK, Alidema E, Choi J, Ghafourifar P (2007) Tamoxifen induces oxidative stress and mitochondrial apoptosis via stimulating mitochondrial nitric oxide synthase. Can Res 67:1282-1290. https://doi.org/10.1158/0008-5472.CAN-06-3099
  40. Mansilla N, Racca S, Gras DE, Gonzalez DH, Welchen E (2018) The complexity of mitochondrial complex IV: an update of cytochrome c oxidase biogenesis in plants. Int J Mol Sci 19:662. https://doi.org/10.3390/ijms19030662
  41. Zheng J, Ramirez VD (2000) Inhibition of mitochondrial proton F0F1-ATPase/ATP synthase by polyphenolic phytochemicals. Br J Pharmacol 130:1115-1123. https://doi.org/10.1038/sj.bjp.0703397
  42. Starke I, Glick GD, Borsch M (2018) Visualizing mitochondrial FoF1-ATP synthase as the target of the immunomodulatory drug Bz-423. Front Physiol 9:803. https://doi.org/10.3389/fphys.2018.00803
  43. Wang H, Chen H, Han S, Fu Y, Tian Y, Liu Y, Wang A, Hou H, Hu Q (2021) Decreased mitochondrial DNA copy number in nerve cells and the hippocampus during nicotine exposure is mediated by autophagy. Ecotoxicol Environ Saf 226:112831. https://doi.org/10.1016/j.ecoenv.2021.112831