DOI QR코드

DOI QR Code

Assessment of toxicity and genotoxic safety profile of novel fisetin ruthenium-p-cymene complex in mice

  • Ishita Seal (Department of Pharmacy, NSHM Knowledge Campus Kolkata-Group of Institution) ;
  • Sidhanta Sil (Department of Pharmacy, NSHM Knowledge Campus Kolkata-Group of Institution) ;
  • Abhijit Das (Department of Pharmacy, NSHM Knowledge Campus Kolkata-Group of Institution) ;
  • Souvik Roy (Department of Pharmacy, NSHM Knowledge Campus Kolkata-Group of Institution)
  • Received : 2022.07.23
  • Accepted : 2022.11.22
  • Published : 2023.04.15

Abstract

Throughout the last decades flavonoids have been considered as a powerful bioactive molecule. Complexation of these flavonoids with metal ions demonstrated the genesis of unique organometallic complexes which provide improved pharmacological and therapeutic activities. In this research, the fisetin ruthenium-p-cymene complex was synthesized and characterized via different analytical methods like UV-visible spectroscopy, Fourier-transform infrared spectroscopy, mass spectroscopy, and scanning electron microscope. The toxicological profile of the complex was evaluated by acute and sub-acute toxicity. Additionally, the mutagenic and genotoxic activity of the complex was assessed by Ames test, chromosomal aberration test, and micronucleus based assay in Swiss albino mice. The acute oral toxicity study exhibited the LD50 of the complex at 500 mg/kg and subsequently, the sub-acute doses were selected. In sub-acute toxicity study, the hematology and serum biochemistry of the 400 mg/kg group showed upregulated white blood cells, aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, creatinine, glucose and cholesterol. However, there was no treatment related alteration of hematological and serum biochemical parameters in the 50, 100, and 200 mg/kg group. In the histopathological analysis, the 50, 100, and 200 mg/kg groups were not associated with any toxicological alterations, whereas the 400 mg/kg group showed prominent toxicological incidences. Nevertheless, the treatment with fisetin ruthenium-p-cymene complex did not exhibit any mutagenic and genotoxic effect in Swiss albino mice. Thus, the safe dose of this novel organometallic complex was determined as 50, 100, and 200 mg/kg without any toxicological and genotoxic potential.

Keywords

Acknowledgement

The authors are grateful to the Department of Pharmacy, NSHM Knowledge Campus Kolkata-Group of Institution for their continuous support and encouragement throughout the experiment.

References

  1. Samanta A, Das G, Das SK (2011) Roles of flavonoids in plants. Int J Pharm Sci Technol 100:12-35
  2. Feng W, Hao Z, Li M (2017) Isolation and structure identification of flavonoids. In: Flavonoids - from biosynthesis to human health. London, IntechOpen. https://doi.org/10.5772/67810
  3. Rodriguez-Garcia C, Sanchez-Quesada C, Gaforio JJ (2019) Dietary flavonoids as cancer chemopreventive agents: an updated review of human studies. Antioxidants 8:137. https://doi.org/10.3390/antiox8050137
  4. Sun Y (1990) Free radicals, antioxidant enzymes, and carcinogenesis. Free Radic Biol Med 8:583-599. https://doi.org/10.1016/0891-5849(90)90156-d
  5. Maher P, Akaishi T, Abe K (2006) Flavonoid fisetin promotes ERK-dependent long-term potentiation and enhances memory. Proc Natl Acad Sci U S A 103:16568-16573. https://doi.org/10.1073/pnas.0607822103
  6. Khan N, Asim M, Afaq F, Abu Zaid M, Mukhtar H (2008) A novel dietary flavonoid fisetin inhibits androgen receptor signaling and tumor growth in athymic nude mice. Cancer Res 68:8555-8563. https://doi.org/10.1158/0008-5472.can-08-0240
  7. Arai Y, Watanabe S, Kimira M, Shimoi K, Mochizuk R, Kinae N (2000) Dietary intakes of flavonols, flavones and isoflavones by Japanese women and the inverse correlation between quercetin intake and plasma LDL cholesterol concentration. J Nutr 130:2243-2250. https://doi.org/10.1093/jn/130.9.2243
  8. Pal HC, Pearlman RL, Afaq F (2016) Fisetin and its role in chronic diseases. Adv Exp Med Biol 928:213-244. https://doi.org/10.1007/978-3-319-41334-1_10
  9. Rengarajan T, Yaacob NS (2016) The flavonoid fisetin as an anticancer agent targeting the growth signaling pathways. Eur J Pharmacol 789:8-16. https://doi.org/10.1016/j.ejphar.2016.07.001
  10. Ahmad S, Khan A, Ali W, Jo MH, Park J, Ikram M, Kim MO (2021) Fisetin rescues the mice brains against D-galactose-induced oxidative stress, neuroinflammation and memory impairment. Front Pharmacol 12:612078. https://doi.org/10.3389/fphar.2021.612078
  11. Cordaro M, D'Amico R, Fusco R, Peritore AF, Genovese T, Interdonato L, Franco G, Arangia A, Gugliandolo E, Crupi R, Siracusa R, Di Paola R, Cuzzocrea S, Impellizzeri D (2022) Discovering the effects of fisetin on NF-κB/NLRP-3/NRF-2 molecular pathways in a mouse model of vascular dementia induced by repeated bilateral carotid occlusion. Biomed 10:1448. https://doi.org/10.3390/biomedicines10061448
  12. Sun Y, Qin H, Zhang H, Feng X, Yang L, Hou DX, Chen J (2021) Fisetin inhibits inflammation and induces autophagy by mediating PI3K/AKT/mTOR signaling in LPS-induced RAW264.7 cells. Food Nutr Res. https://doi.org/10.29219/fnr.v65.6355
  13. Kumar S, Pandey AK (2013) Phenolic content, reducing power and membrane protective activities of Solanum xanthocarpum root extracts. Vegetos-Int J Plant Res 26:301. https://doi.org/10.5958/j.2229-4473.26.1.043
  14. Ikeda NEA, Novak EM, Maria DA, Velosa AS, Pereira RMS (2015) Synthesis, characterization and biological evaluation of rutin-zinc(II) flavonoid -metal complex. Chem Biol Interact 239:184-191. https://doi.org/10.1016/j.cbi.2015.06.011
  15. Samsonowicz M, Regulska E, Kalinowska M (2017) Hydroxy-flavone metal complexes - molecular structure, antioxidant activity and biological effects. Chem Biol Interact 273:245-256. https://doi.org/10.1016/j.cbi.2017.06.016
  16. Zhang L, Liu Y, Wang Y, Xu M, Hu X (2018) UV-Vis spectroscopy combined with chemometric study on the interactions of three dietary flavonoids with copper ions. Food Chem 263:208-215. https://doi.org/10.1016/j.foodchem.2018.05.009
  17. Dimitric Markovic JM, Markovic ZS, Veselinovic DS, Krstic JB, Predojevic Simovic JD (2009) Study on fisetin-aluminium(III) interaction in aqueous buffered solutions by spectroscopy and molecular modeling. J Inorg Biochem 103:723-730. https://doi.org/10.1016/j.jinorgbio.2009.01.005
  18. Afanas'eva IB, Ostrakhovitch EA, Mikhal'chik EV, Ibragimova GA, Korkina LG (2001) Enhancement of antioxidant and anti-inflammatory activities of bioflavonoid rutin by complexation with transition metals. Biochem Pharmacol 61:677-684. https://doi.org/10.1016/s0006-2952(01)00526-3
  19. Bors W, Heller W, Michel C, Saran M (1990) Flavonoids as antioxidants: determination of radical-scavenging efficiencies. Methods Enzymol 186:343-355. https://doi.org/10.1016/0076-6879(90)86128-i
  20. Kostyuk V, Potapovich A, Vladykovskaya E, Korkina L, Afanas'ev I (2001) Influence of metal ions on flavonoid protection against asbestos-induced cell injury. Arch Biochem Biophys 385:129-137. https://doi.org/10.1006/abbi.2000.2118
  21. Hartinger CG, Dyson PJ (2009) Bioorganometallic chemistry-from teaching paradigms to medicinal applications. Chem Soc Rev 38:391-401. https://doi.org/10.1039/b707077m
  22. Raj Kumar R, Ramesh R, Malecki JG (2018) Synthesis and structure of arene ruthenium(II) benzhydrazone complexes: antiproliferative activity, apoptosis induction and cell cycle analysis. J Organomet Chem 862:95-104. https://doi.org/10.1016/j.jorganchem.2018.03.013
  23. Bratsos I, Simonin C, Zangrando E, Gianferrara T, Bergamo A, Alessio E (2011) New half sandwich-type Ru(ii) coordination compounds characterized by the fac-Ru(dmso-S)3 fragment: influence of the face-capping group on the chemical behavior and in vitro anticancer activity. Dalton Trans 40:9533. https://doi.org/10.1039/c1dt11043h
  24. Jamieson ER, Lippard SJ (1999) Structure, recognition, and processing of cisplatin-DNA adducts. Chem Rev 99:2467-2498. https://doi.org/10.1021/cr980421n
  25. Chu G (1994) Cellular responses to cisplatin. The roles of DNA-binding proteins and DNA repair. J Biol Chem 269:787-790. https://doi.org/10.1016/s0021-9258(17)42175-2
  26. Galanski M (2006) Recent developments in the field of anticancer platinum complexes. Recent Pat Anticancer Drug Discov 1:285-295. https://doi.org/10.2174/157489206777442287
  27. Samimi G, Kishimoto S, Manorek G, Breaux JK, Howell SB (2006) Novel mechanisms of platinum drug resistance identified in cells selected for resistance to JM118 the active metabolite of satraplatin. Cancer Chemother Pharmacol 59:301-312. https://doi.org/10.1007/s00280-006-0271-0
  28. Huang H, Zhang P, Yu B, Chen Y, Wang J, Ji L, Chao H (2014) Targeting nucleus DNA with a cyclometalated dipyridophenazineruthenium(II) complex. J Med Chem 57:8971-8983. https://doi.org/10.1021/jm501095r
  29. Rahman MM, Islam MB, Biswas M, Khurshid Alam AH (2015) In vitro antioxidant and free radical scavenging activity of different parts of Tabebuia pallida growing in Bangladesh. BMC Res Notes 8:621. https://doi.org/10.1186/s13104-015-1618-6
  30. Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. Anal Biochem 239:70-76. https://doi.org/10.1006/abio.1996.0292
  31. Griffin SP, Bhagooli R (2004) Measuring antioxidant potential in corals using the FRAP assay. J Exp Mar Biol Ecol 302:201-211. https://doi.org/10.1016/j.jembe.2003.10.008
  32. Pennycooke JC, Cox SE, Stushnoff C (2005) Relationship of cold acclimation, total phenolic content and antioxidant capacity with chilling tolerance in petunia (Petunia hybrid). Environ Exp Bot 53:225-232. https://doi.org/10.1016/j.envexpbot.2004.04.002
  33. Maron DM, Ames BN (1983) Revised methods for the Salmonella mutagenicity test. Mutat Res 113:173-215. https://doi.org/ 10.1016/0165-1161(83)90010-9
  34. Llana-Ruiz-Cabello M, Maisanaba S, Puerto M, Prieto AI, Pichardo S, Moyano R, Gonzalez-Perez JA, Camean AM (2016) Genotoxicity evaluation of carvacrol in rats using a combined micronucleus and comet assay. Food Chem Toxicol 98:240-250. https://doi.org/10.1016/j.fct.2016.11.005
  35. Murakami M, Hirano T (2008) Intracellular zinc homeostasis and zinc signaling. Cancer Sci 99:1515-1522. https://doi.org/10.1111/j.1349-7006.2008.00854.x
  36. Sliwinski T, Czechowska A, Kolodziejczak M, Jajte J, Wisniewska-Jarosinska M, Blasiak J (2009) Zinc salts differentially modulate DNA damage in normal and cancer cells. Cell Biol Int 33:542-547. https://doi.org/10.1016/j.cellbi.2009.02.004
  37. Costello LC, Franklin RB (2012) Cytotoxic/tumor suppressor role of zinc for the treatment of cancer: an enigma and an opportunity. Expert Rev Anticancer Ther 12:121-128. https://doi.org/10.1586/era.11.190
  38. Soto AM, Sonnenschein C (2004) The somatic mutation theory of cancer: growing problems with the paradigm? Bioassays 26:1097-1107. https://doi.org/10.1002/bies.20087
  39. Mortelmans K, Zeiger E (2000) The Ames Salmonella/micro-some mutagenicity assay. Mutat Res 455:29-60. https://doi.org/10.1016/s0027-5107(00)00064-6
  40. Phillips DH, Arlt VM (2009) Genotoxicity: damage to DNA and its consequences. EXS 99:87-110. https://doi.org/10.1007/978-3-7643-8336-7_4
  41. Genetic Alliance, The New York-Mid-Atlantic Consortium for Genetic and Newborn Screening Services (2009) Understanding genetics: a New York, Mid-Atlantic guide for patients and health professionals. Genetic alliance.
  42. Ghosh N, Sandur R, Ghosh D, Roy S, Janadri S (2017) Acute, 28days sub acute and genotoxic profiling of quercetin-magnesium complex in Swiss albino mice. Biomed Pharmacother 86:279-291. https://doi.org/10.1016/j.biopha.2016.12.015
  43. Fenech M, Kirsch-Volders M, Natarajan AT, Surralles J, Crott JW, Parry J, Norppa H, Eastmond DA, Tucker JD, Thomas P (2010) Molecular mechanisms of micronucleus, nucleoplasmic bridge and nuclear bud formation in mammalian and human cells. Mutagenesis 26:125-132. https://doi.org/10.1093/mutage/geq052
  44. Ikken Y, Morales P, Martinez A, Marin ML, Haza AI, Cambero MI (1999) Antimutagenic effect of fruit and vegetable ethanolic extracts against N-nitrosamines evaluated by the Ames test. J Agric Food Chem 47:3257-3264. https://doi.org/10.1021/jf990166n
  45. Suzuki Y, Nagae Y, Li J, Sakaba H, Mozawa K, Takahashi A, Shimizu H (1989) The micronucleus test and erythropoiesis. Effects of erythropoietin and a mutagen on the ratio of polychromatic to normochromatic erythrocytes (P/N ratio). Mutagenesis 4:420-424. https://doi.org/10.1093/mutage/4.6.420
  46. Luzhna L, Kathiria P, Kovalchuk O (2013) Micronuclei in genotoxicity assessment: from genetics to epigenetics and beyond. Front Genet 4:131. https://doi.org/10.3389/fgene.2013.00131