DOI QR코드

DOI QR Code

Saline extract of Portulaca elatior leaves with photoprotective and antioxidant activities does not show acute oral and dermal toxicity in mice

  • Received : 2022.07.28
  • Accepted : 2022.11.28
  • Published : 2023.04.15

Abstract

The present study aimed to evaluate saline extracts from the leaves (LE) and stem (SE) of Portulaca elatior in relation to their phytochemical composition and photoprotective and antioxidant effects, as well as to evaluate the toxicity of the leaf extract. The extracts were characterized for protein concentration and phenol and flavonoid contents, as well as for thin layer chromatography (TLC) and high-performance liquid chromatography (HPLC) profiles. Total antioxidant capacity and DPPH and ABTS+ scavenging activities were determined. In the photoprotective activity assay, the sun protection factor (SPF) was calculated. The toxicity evaluation of LE included in vitro hemolytic assay and in vivo oral and dermal acute toxicity assays in Swiss mice. LE showed the highest protein, phenol, and flavonoid (8.79 mg/mL, 323.46 mg GAE/g, and 101.96 QE/g, respectively). TLC revealed the presence of flavonoids, reducing sugars, terpenes, and steroids in both extracts. In HPLC profiles, LE contained flavonoids, while SE contained flavonoids and ellagic tannins. The antioxidant activity assays showed the lowest IC50 values (34.15-413.3 ㎍/mL) for LE, which presented relevant SPF (>6) at 50 and 100 ㎍/mL. LE demonstrated low hemolytic capacity, and no signs of intoxication were observed in mice treated orally or topically at 1000 mg/kg. However, at 2000 mg/kg, an increase in the mean corpuscular volume of erythrocytes and a reduction in lymphocytes were observed; animals treated topically with 2000 mg/kg displayed scratching behavior during the first hour of observation and showed edema and erythema that regressed after six days. In conclusion, LE did not present acute oral or dermal toxicity in Swiss mice at a dose of 1000 mg/kg and showed slight toxicity in animals treated with 2000 mg/kg.

Keywords

Acknowledgement

The authors express their gratitude to the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) for financial support (407192/2018-2) and investigator research grants (PMGP and THN). We are also grateful to the Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES; Finance Code 001) and the Fundacao de Amparo a Ciencia e Tecnologia do Estado de Pernambuco (FACEPE: APQ 0108-2.08/14) for financial support. SPS would like to thank CAPES for the graduate scholarship.

References

  1. Santos-Sanchez NF et al (2019) Antioxidant compounds and their antioxidant mechanism. In Shalaby E (ed), Antioxidants, IntechOpen, London. https://doi.org/10.5772/intechopen.85270 
  2. Vellosa JCR et al (2021) Estresse oxidativo: uma introducao ao estado da arte. Brazilian Int J Dev 7:10152-10168. https://doi.org/10.34117/bjdv7n1-688 
  3. Bouhajeb R et al (2020) Chemical composition analysis, antioxidant, and antibacterial activities of eggplant leaves. Chem Biodiver 17:e2000405. https://doi.org/10.1002/cbdv.202000405 
  4. Radice M et al (2016) Herbal extracts, lichens and biomolecules as natural photo-protection alternatives to synthetic UV filters. A systematic review. Fitoterapia 114:144-162. https://doi.org/10.1016/j.fitote.2016.09.003 
  5. Silva NCS, Vitor AM, Bessa HHS, Barros RMS (2017) A utilizacao de plantas medicinais e fitoterapicos em prol da saude.Unica Cadernos Academicos3 
  6. Silva JDF et al (2019) Portulaca elatior root contains a trehalose-binding lectin with antibacterial and antifungal activities. Int J Biol Macromol 126:291-297. https://doi.org/10.1016/j.ijbiomac.2018.12.188 
  7. Silva SP, Silva JDF, Costa CBL et al (2021) Purification, characterization, and assessment of antimicrobial activity and toxicity of Portulaca elatior leaf lectin (PeLL). https://doi.org/10.1007/s12602-021-09837-w. Probiotics Antimicrob Prot 
  8. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin-Phenol reagent. J Biol Chem 193:265-276. https://doi.org/10.1016/S0021-9258(19)52451-6 
  9. Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16:144-158  https://doi.org/10.5344/ajev.1965.16.3.144
  10. Woisky RG, Salatino A (1998) Analysis of propolis: some parameters and procedures for chemical quality control. J Apic Res 37:99-105. https://doi.org/10.1080/00218839.1998.11100961 
  11. Young IS (2001) Measurement of total antioxidant capacity. J Clin Pathol 54:339. https://doi.org/10.1136/jcp.54.5.339 
  12. Mishra K, Ojha H, Chaudhury NK (2012) Estimation of antiradical properties of antioxidants using DPPH- assay: a critical review and results. Food Chem 130:1036-1043. https://doi.org/10.1016/j.foodchem.2011.07.127 
  13. Nenadis N, Wang LF, Tsimidou M, Zhang HY (2004) Estimation of scavenging activity of phenolic compounds using the ABTS + assay. J Agric Food Chem 52:4669-4674. https://doi.org/10.1021/jf0400056 
  14. Mansur JDS et al (1986) Determinacao do fator de protecao solar por espectrofotometria. An Bras Dermatol 61:121-124 
  15. Malagoli D (2007) A full-length protocol to test hemolytic activity of palytoxin on human erythrocytes. Invertebr Surviv J 4:92-94 
  16. OECD (2002) Test No. 423: Acute oral toxicity - acute toxic class Method, OECD Guidelines for the testing of Chemicals, Sect. 4. OECD Publishing, Paris. https://doi.org/10.1787/978926407 
  17. OECD (2017) Test No. 402: Acute dermal toxicity, OECD Guidelines for the testing of Chemicals, Sect. 4. OECD Publishing, Paris. https://doi.org/10.1787/9789264070585-en 
  18. Malone MH (1977) Pharmacological approaches to natural product screening and evaluation. New natural products and plant drugs with pharmacological, biological or therapeutical activity. Springer, Berlin, Heidelberg, pp 23-53 
  19. Gnanadhas DP, Thomas M, Thomas R, Raichur AM, Chakravortty D (2013) Interaction of silver nanoparticles with serum proteins affects their antimicrobial activity in vivo. Antimicrob Agents Chemother 57:4945-4955. https://doi.org/10.1128/AAC.00152-13 
  20. Calderon LA, Sobrinho JC, Zaqueo KD, Moura AA, Grabner AN, Mazzi MV, Marcussi S, Nomizo A, Fernandes CFC, Zuliani JP, Carvalho BMA, Siares AM (2014) Antitumoral activity of snake venom proteins: New trends in cancer therapy. Biomed Res Int 2014:203639. https://doi.org/10.1155/2014/20363 
  21. Sahin B et al (2018) Characterization of Bacillus thuringiensis isolates by their insecticidal activity and their production of Cry and Vip3 proteins. PLoS ONE 13:e0206813. https://doi.org/10.1371/journal.pone.0206813 
  22. Verma AK, Chatli MK, Kumar P, Mehta N (2019) Antioxidant and antimicrobial activity of porcine liver hydrolysate in meat emulsion and their influence on physico-chemical and color deterioration during refrigeration storage. J Food Sci 84:1844-1853. https://doi.org/10.1111/1750-3841.14683 
  23. Campos MTG, Leme FOP (2018) Estresse oxidativo: fisiopatogenia e diagnostico laboratorial. Pubvet 12:1-8. https://doi.org/10.22256/pubvet.v12n1a10.1-8 
  24. Luna-Vital DA, Mojica L, Mejia EG, Mendoza S, Loarca-Pina G (2015) Biological potential of protein hydrolysates and peptides from common bean (Phaseolus vulgaris L.): a review. Food Res Int 76:39-50. https://doi.org/10.1016/j.foodres.2014.11.024 
  25. Zhang J et al (2009) Antioxidant activities of the rice endosperm protein hydrolysate: identification of the active peptide. Eur Food Res Technol 229:709-719. https://doi.org/10.1007/s00217-009-1103-3 
  26. Gao S et al (2020) Effects of dietary supplementation of natural astaxanthin from Haematococcus pluvialis on antioxidant capacity, lipid metabolism, and accumulation in the egg yolk of laying hens. Poult Sci 99:11:5874-5882. https://doi.org/10.1016/j.psj.2020.08.029 
  27. Vieira DS et al (2021) Atividades biologicas: anti-infecciosa, antioxidante e cicatrizante da especie vegetal Jatropha multifida. Rev Bras Enferm 74. https://doi.org/101590/0034-7167-2020-0451  101590/0034-7167-2020-0451
  28. Santos JL et al (2020) Probing structural properties and antioxidant activity mechanisms for eleocarpanthraquinone. J Mol Model 26:1-8. https://doi.org/10.1007/s00894-020-04469-3 
  29. Olszowy M (2019) What is responsible for antioxidant properties of polyphenolic compounds from plants? Int J Plant Physiol Biochem 144:135-143. https://doi.org/10.1016/j.plaphy.2019.09.039 
  30. Ifeanyi OE (2018) A review on free radicals and antioxidants. Int J Curr Res Med Sc 4:123-133. https://doi.org/10.22192/ijcrms.2018.04.02.019 
  31. Souza JC, Rescarolli CLS, Nunez CV (2018) Producao de metabolitos secundarios por meio da cultura de tecidos vegetais. Revista Fitos 12:269. https://doi.org/10.17648/2446-4775.2018.550 
  32. Addor FAS et al (2022) Sunscreen lotions in the dermatological prescription: review of concepts and controversies. An Bras Dermatol 97:204-222. https://doi.org/10.1016/j.abd.2021.05.012 
  33. Elmastas M et al (2018) Antioxidant activity of an anatolian herbal tea-Origanum minutiflorum: isolation and characterization of its secondary metabolites. Int J Food Prop 21:374-384. https://doi.org/10.1080/10942912.2017.1416399 
  34. Saewan N, Jimtaisong A (2013) Photoprotection of natural flavonoids. J Appl Pharm Sci 9:129-141. https://doi.org/10.7324/JAPS.2013.3923 
  35. Nunes AR et al (2018) Use of flavonoids and cinnamates, the main photoprotectors with natural origin. Adv Pharmacol Sci 2018: 5341487 https://doi.org/10.1155/2018/5341487 
  36. Saewan N, Jimtaisong A (2015) Natural products as photoprotection. J Cosmet Dermatol 14:47-63. https://doi.org/10.1111/jocd.12123 
  37. Gontijo DC, Nunes LG, Farias LM, Duarte MGR, Carvalho AF, Fietto LG, Leite JPV (2020) Assessment of the phenolic content, mutagenicity and genotoxicity of ethanolic extracts of stem bark and leaves from Strychnos pseudoquina A. St.-hil. Drug Chem Toxicol 43:539-545. https://doi.org/10.1080/01480545.2018.1515218 
  38. Ghosh T, Biswas MK, Roy P, Guin C (2018) A review on traditional and pharmacological uses of Croton bonplandianum with special reference to phytochemical aspect. Eur J Med Plants 22:1-10. https://doi.org/10.9734/EJMP/2018/40697 
  39. Cordeiro BMPC, Carvalho Junior AR, Santos JRA, Araujo AD, Silva AG, Correia MTS, Silva MV, Napoleao TH, Silva LCN, Santos NDL, Paiva PMG (2020) Anticryptococcal activity of hexane extract from Spondias tuberosa Arruda and associated cellular events. J Mycol Med 30:100965. https://doi.org/10.1016/j.mycmed.2020.100965 
  40. Rashid MA et al (2018) Chemical composition and antioxidant, antimicrobial and haemolytic activities of Crambe cordifolia roots. Farmacia 66:165-171 
  41. Chaudhuri S et al (2007) Interaction of flavonoids with red blood cell membrane lipids and proteins: antioxidant and antihemolytic effects. Int J Biol Macromol 41:42-48. https://doi.org/10.1016/j.ijbiomac.2006.12.003 
  42. Alinezhad H, Azimi R, Zare M, Ebrahimzadeh MA, Eslami S, Nabavi SE, Nabavi SM (2013) Antioxidant and antihemolytic activities of ethanolic extract of flowers, leaves, and stems of Hyssopus officinalis L. var. angustifolius. Int J Food Prop 16:1169-1178. https://doi.org/10.1080/10942912.2011.578319 
  43. Teke GN, Kuete V (2014) Acute and subacute toxicities of African medicinal plants. In: Kuete V (ed) Toxicological Survey of African Medicinal Plants, Elsevier, pp. 63-98. https://doi.org/10.1016/B978-0-12-800018-2.00005-4 
  44. Maner BS, Moosavi L (2022) Mean Corpuscular volume. StatPearls [Internet]. Stat-Pearls Publishing, Treasure Island (FL) 
  45. Failace R (2015) Hemograma: manual de interpretacao. Artmed Editora, Rio de Janeiro 
  46. Arsanios DM et al (2021) Criptococosis y linfocitopenia T CD4 idiopatica: Reporte de un caso. Infectio 25:49-54. https://doi.org/10.22354/in.v25i1.909 
  47. Cataldo F, Warleu F, Otero V, Kohan D, Odstrcil S, Brulc E (2021) Linfoma T/NK EBER positivo en paciente con linfocitopenia CD4 idiopatica. Medicina 81:458-461 
  48. Licata A (2016) Adverse drug reactions and organ damage: the liver. Eur J Int Med 28:9-16. https://doi.org/10.1016/j.ejim.2015.12.017 
  49. Almazroo O, Abdulhameed M, Mohammad K, Venkataramanan R (2020) Drug metabolism in the liver. Clin Liver Dis 21:1-20. https://doi.org/10.1016/j.cld.2016.08.001 
  50. Anusha M, Venkateswarlu M, Prabhakaran V, Taj SS, Kumari BP, Ranganayakulu D (2011) Hepatoprotective activity of aqueous extract of Portulaca oleracea in combination with lycopene in rats. Indian J Pharmacol 43:563. https://doi.org/10.4103/0253-7613.84973 
  51. Galiza GJ, Pimentel LA, Oliveira DM, Pierezan F, Dantas AF, Medeiros RM, Riet-Correa F (2011) Intoxicacao por Portulaca elatior (Portulacaceae) em caprinos. Pesq Vet Bras 31:465-470. https://doi.org/10.1016/j.ijbiomac.2018.12.188 
  52. Oliveira Neto TS et al (2017) Intoxicacao por Portulaca elatior (Portulacaceae) em bovinos. Pesq Vet Bras 37:785-789. https://doi.org/10.1590/s0100-736x2017000800001 
  53. Shingade GM (2012) Review on: recent trend on transdermal drug delivery system. J Drug Deliv Ther 2:10-18. https://doi.org/10.22270/jddt.v2i1.74 
  54. Jin SE, Kim EJ, Kim H, Kim H, Hwang W (2020) In vitro and in vivo toxicological evaluation of transition metal-doped titanium dioxide nanoparticles: Nickel and platinum. Mater Sci Eng C 115:110843. https://doi.org/10.1016/j.msec.2020.110843 
  55. Novak-Bilic G et al (2018) Irritant and allergic contact dermatitis-skin lesion characteristics. Acta Clin Croat 57:713-719. https://doi.org/10.20471/acc.2018.57.04.13 
  56. Junlatat J et al (2014) Hair growth-promoting effect of Carthamus tinctorius Floret extract. Phytother Res 28:1030-1036. https://doi.org/10.1002/ptr.5100