과제정보
본 연구는 2022년도 중소벤처기업부의 기술개발사업 지원에 의한 연구임 [S3278476]. 이 논문은 2020년도 정부 (교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임 (No. 2020R1I1A3052733). 이 성과는 정부 (과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임 (No. 2021R1C1C2095696).
참고문헌
- E.Heidari, A.Gladisch, B.Moshiri, and D.Tavangarian, "Survey on location information services for Vehicular Communication Networks," Wireless networks, Vol.20, No.5, pp.1085-1105, 2014. https://doi.org/10.1007/s11276-013-0666-x
- S.K.Prasad, J.Rachna, O.I.Khalaf, and D.N.Le, "Map matching algorithm: real time location tracking for smart security application," Telecommunications and Radio Engineering, Vol.79, No.13, pp.1189-1203, 2020. https://doi.org/10.1615/TelecomRadEng.v79.i13.80
- A.Poulose, and D.S.Han, "UWB indoor localization using deep learning LSTM networks," Applied Sciences-Basel, Vol. 10, No.18, pp.6290:1-6290:23, 2020. https://doi.org/10.3390/app10186290
- G.Li, E.Geng, Z.Ye, Y.Xu, J.Lin, and Y.Pang, "Indoor positioning algorithm based on the improved RSSI distance model," Sensors, Vol.18, No.9, pp.2820:1-2820:15, 2018. https://doi.org/10.3390/s18092820
- E.Hatem, B.El-Hassan, M.J.Laheurte, S.Abou-Chakra, E.Colin, and C.Marechal, "Study the estimated distance error in indoor localization using UHF-RFID," in Proceedings of IEEE Middle East and North Africa Communications Conference (MENACOMM), pp.1-5, 2018.
- N.Chuku and A.Nasipuri, "RSSI-Based localization schemes for wireless sensor networks using outlier detection," Journal of Sensor and Actuator Networks, Vol.10, No.1, pp.10:1-10:22, 2021. https://doi.org/10.3390/jsan10010010
- M.I.M.Ismail, R.A.Dzyauddin, S.Samsul, N.A.Azmi, Y.Yamada, M.F.M.Yakub, and N.A.B.A.Salleh, "An RSSI-based wireless sensor node localisation using trilateration and multilateration methods for outdoor environment," 2019, arXiv:1912.07801. [Online]. Available: https://arxiv.org/abs/1912.07801
- Z.Wu, E.Jedari, R.Muscedere, and R.Rashidzadeh, "Improved particle filter based on WLAN RSSI fingerprinting and smart sensors for indoor localization," Computer Communications, Vol.83, pp.64-71, 2016. https://doi.org/10.1016/j.comcom.2016.03.001
- S.B.LEE, J.H.Kwon, and E.J.Kim, "Linear Regression-Based Distance Estimation Model for Preventing Safety Accidents in School Vehicles," in Proceedings of the Korean Institute of Communication Sciences Conference, pp.1219-1220, 2021.
- Y.H.Kwon and I.B.Jung, "A Location Compensation Method for Smart Mobile Objectsusing Multilateral Machine Learning," KIISE Transactions on Computing Practices, Vol.26, No. 7, pp.312-321, 2020. https://doi.org/10.5626/KTCP.2020.26.7.312
- M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin et al., "Tensorflow: Large-scale machine learning on heterogeneous distributed systems," 2016, arXiv:1603.04467. [Online]. Available: https://arxiv.org/abs/1603.04467
- D.C.LEE. "Comparison of Reinforcement Learning Activation Functions to Maximize Rewards in Autonomous Highway Driving," The Journal of the Institute of Internet, Broadcasting and Communication, Vol.22, No.5, pp. 63-68, 2022. https://doi.org/10.7236/JIIBC.2022.22.5.63
- C.T.Chen, and G.X.Gu, "Generative deep neural networks for inverse materials design using backpropagation and active learning," Advanced Science, Vol.7, No.5, pp.1902607:1-1902607:10, 2020.
- L.Li, M.Doroslovacki, and M.H.Loew, "Approximating the gradient of cross-entropy loss function," IEEE Access, Vol.8, pp.111626-111635, 2020.
- Beafon, BLE Beacon of Beafon [Online]. Available: http://www.beafon.co.kr
- Raspberry Pi, Teach, Learn, and Make with Raspberry Pi [Online]. Available: https://www.raspberrypi.org