DOI QR코드

DOI QR Code

IoT 환경에서 가용 전송률을 고려한 스무딩 알고리즘의 성능 평가

Performance Evaluation of Smoothing Algorithm Considering Network Bandwidth in IoT Environment

  • 이면재 (백석대학교 컴퓨터공학부)
  • MyounJae Lee (Division of Computer Engineering, BaekSeok University)
  • 투고 : 2023.01.18
  • 심사 : 2023.03.04
  • 발행 : 2023.04.30

초록

스무딩은 압축되어 저장된 비디오 데이터에 대해 동일한 전송률로 보낼 수 있는 프레임들의 구간으로 구성되는 전송 계획을 세우는 것을 말한다. 스무딩 알고리즘은 전송률 변화 횟수, 전송률 증가 횟수, 전송률 증가량을 최소화하기 위해 다양한 알고리즘들이 연구되어졌다. 본 연구는 서버 대역폭이 제한적인 환경에서 서버에서 확보할 여분의 대역폭의 크기를 최대화하기 위하여 전송률의 증가가 요구되는 경우에는 전송률 증가량을 최소화하고 전송률 감소가 요구되는 경우에는 전송률 증가량을 최대화하는 스무딩 알고리즘에 대한 성능 평가이다. 서버에서 이용할 수 있는 가용전송률과 버퍼 크기를 다양하게 설정하고 재생률 변화횟수, 최소 재생률, 평균 재생률, 재생률 변화량으로 평가한다. 비교 결과, 제안 알고리즘은 평균 재생률, 재생률 변화량에서 우수함을 보였다.

Smoothing is to creating a transmission plan consisting of sections of frames that can be sent at the same transmission rate for compressed and stored video data. Various algorithms have been studied for the smoothing to minimize the number of transmission rate changes, the number of transmission rate changes, and the amount of transmission rate increase. This study evaluates the performance of a smoothing algorithm that minimizes the increase in transmission rates and maximizes the increase in transmission rates when the transmission rate is required to maximize the excess bandwidth to be secured by the server in an environment with limited server bandwidth. The available transmission rates and buffer sizes available in the server are set in various ways and evaluated by the number of fps changes, the minimum fps, the average fps, and fps variability. As a result of the comparison, the proposed algorithm showed excellent average fps and fps variability.

키워드

과제정보

본 논문은 2023학년도 백석대학교 학술연구비 지원을 받아 작성되었음

참고문헌

  1. D. Le Gall, "MPEG: A video compression standard for multimedia applications", Communications of the ACM, Vol.34, No.4, April, pp.47-58, 1991. https://doi.org/10.1145/103085.103090
  2. W.Feng, "Rate-constrained bandwidth smoothing for the delivery of stored video", in SPIE Multimedia Networking and Computing, Vol.30, No.20, pp.316-327, 1997. https://doi.org/10.1117/12.264304
  3. Ray-I chang,Meng-Chang Chen,Jan-Ming Ho and Ming-Tat Ko, "Schedulable Region for VBR Media Transmission with Optimal Resource Allocation and Utilization", infsci(1~2), Vol.141, No.1-2, pp.61-79, 2002. https://doi.org/10.1016/S0020-0255(01)00191-8
  4. W.Feng, F.Jahanian, S.Sechrest, "An Optimal Bandwidth Allocation Strategy for the Delivery of Compressed Prerecoded Video", ACM/Springer-Verlag Multimedia Systems, Vol.5, No. 5, pp.297-309, Sept 1997. https://doi.org/10.1007/s005300050062
  5. MyounJae Lee, et,al, "An Efficient Smoothing Algorithm for Video Transmission at Variable Bit Rate", KIPS Transactions on Computer and Communication Systems, Vol.11, No.7, pp.1009-1022, 2004.
  6. MyounJae Lee, "Video Data Transfer Algorithms for Efficient Use of Network Bandwidth", Journal of Next-generation Convergence Information Services Technology, Vol.10, No.1, pp.11-20, 2021. https://doi.org/10.29056/jncist.2021.02.02
  7. MyounJae Lee, "Performance Evaluation of Smoothing Algorithm for Efficient Use of Network Resources in IoT environments", Journal of The Korea Internet of Things Society, Vo.7, No.2, pp.47-53, 2021.
  8. W. Feng, S. Sechrest, "Critical Bandwidth Allocation for the Delivery of Compressed Prerecorded Video", Computer Communications, Vol.18, No.10, pp.709-717, 1995. https://doi.org/10.1016/0140-3664(95)98484-M
  9. W. Feng, et. al., "Smoothing and buffering for delivery of prerecorded compressed video", in Proc. of ISET/SPIE Symp. on Multimedia Comp. and Networking, Vol.18, No.10, pp.234-242, 1995.
  10. J. McManus and K.Ross, "Video on demand over ATM:Constant-rate Transmission and Transport", in proc.of ACM SIGMETRICS, Vol.14, No.6, pp.222-231, May 1996.
  11. J. Zhang and J. Hui. "Applying traffic smoothing techniques for quality of service control in VBR video transmissions", Computer Communications, Vol.21, No.4, pp.375-389, 1998. https://doi.org/10.1016/S0140-3664(97)00170-9
  12. J. Zhang and J. Y. Hui, "Traffic Characteristics and Smoothness Criteria in VBR Video Traffic Smoothing", in Proc. of the ICMC and Systems, Vol.1, pp.3-11. 1997.
  13. P. Thiran, et. al., "Network calculus applied to optimal multimedia smoothing", Proceedings IEEE INFOCOM 2001, Vol.3, pp.1474-1483, 2001.
  14. Han-Chieh Chao, C.L.Hung, "Efficient Changes and Variability Bandwidth Allocation for VBR Media Streams", IEEE International Conference on Communications. Conference Proceedings, Vol.12, pp. 179-185, 2001.
  15. J.D. Salehi, et. al., "Supporting stored video: Reducing rate variability and end-to-end resource requirements through optimal smoothing", in Proc. of ACM SIGMETRICS, Vol.6, No.4, pp.222-231, 1996.
  16. W. Feng and J. Rexford. "Performance evaluation of smoothing algorithms for transmitting prerecorded VBR video", IEEE Trans. on Multimedia, Vol.14, No.6, pp.302-312, 1999. https://doi.org/10.1109/6046.784468
  17. Wu-chi Feng, Ming Liu, "Critical Bandwidth Allocation Technique for Stored Video Delivery Across Best-Effort Network", Vol.18, No.5, pp.25, (OSUCISRC-8/98-TR32) 1998.
  18. Wu-chi Feng, Ming Liu, "Extending critical bandwidwith allocation Techniques for stored video delivery across best-effort networks", International Journal of COMMUNICATION SYSTMES Int.J.Commun.sust, Vol.14, No.10, pp.925-940, 2001. https://doi.org/10.1002/dac.516
  19. MyounJae Lee, "Smoothing Algorithm Considering Server Bandwidth and Network", Journal of Internet of Things and Convergence, Vol.8, No.1, pp.53-58, 2022.  https://doi.org/10.20465/KIOTS.2022.8.1.053