DOI QR코드

DOI QR Code

Analysis of Photochemical Ozone Formation Regime in Busan - Comparative Study on Busan vs. Seoul Metropolitan Area(Ⅳ)

부산지역 광화학 오존 생성 regime 분석 - 수도권과 비교연구 (Ⅳ)

  • Seung-Hee Baek (Department of Atmospheric Sciences, Pusan National university) ;
  • Hyo-Jung Lee (Department of Atmospheric Sciences, Pusan National university) ;
  • Cheol-Hee Kim (Department of Atmospheric Sciences, Pusan National university)
  • 백승희 (부산대학교 대기환경과학과) ;
  • 이효정 (부산대학교 대기환경과학과) ;
  • 김철희 (부산대학교 대기환경과학과)
  • Received : 2022.12.02
  • Accepted : 2023.05.04
  • Published : 2023.05.31

Abstract

This study analyzed characteristics of ozone (O3) formation regimes in Busan over a period of recent five years (2015~2019) and compared the findings with those obtained in Seoul. We employed four observed variations: early morning commuting-hour (i.e., 06:00-09:00 LST) nitrogen dioxide (NO2), peak-hour (i.e., 12:00-16:00 LST) O3, 8-hour average O3 (MDA8 O3), and △O3 (=O3_max- O3_min) in Busan and Seoul. In addition, the NO2-O3 relation was assessed to interpret which of NOx-limited or volatile organic compound (VOC)-limited was dominant. In Busan, the annual mean O3 concentration was relatively higher than in Seoul, whereas there were fewer high-concentration days. The Pearson correlation coefficients (R) between Early morning-hour NO2 and the Peak-hour O3 was positive (but close to zero) in Busan and negative in Seoul. Likewise, the R between the Early morning-hour NO2 and the △O3 showed a relatively considerable positive correlation (R=+0.4~0.5)(R=+0.4~0.5) in Busan, while a weak positive correlation (R=+0.1~0.2) in Seoul. From this result, it can be inferred that the O3 formation regime in Busan was intrepreted to be nearly neutral or relatively closer to the NOx-limited regime than Seoul, while Seoul to the VOC-limited regime. The study findings imply that O3 control strategies should be applied differently in Busan and Seoul. The results here were inferred from surface NO2 and O3 observations, and the varification studies based on in-situ VOCs measurements would be needed.

Keywords

Acknowledgement

이 논문은 2020년도 정부(교육부)의 재원으로 한국연구재단 기초연구사업의 지원을 받아 수행된 연구입니다(No. 2020R1A6A1A03044834). 본 논문을 세심하게 심사해 주신 심사위원분들께 감사드립니다.

References

  1. Campbell, P., Zhang, Y., Yahya, K., Wang, K., Hogrefe, C., Pouliot, G., Knote, C., Hodzic, A., San Jose, R., Perez, J., Guerrero, P. J., Baro, R., Makar, P., 2015, A multi-model assessment for the 2006 and 2010 simulations under the air quality model evaluation international initiative (AQMEII) phase 2 over North America: Part I. Indicators of the sensitivity of O3 and PM2.5 formation regimes, Atmos. Environ., 115, 569-586. https://doi.org/10.1016/j.atmosenv.2014.12.026
  2. Chang, L. S., Choi, J. Y., Son, J., Lee, S., Lee, D., Jo, Y. J., Kim, C. H., 2020, Interpretation of decadal-scale ozone production efficiency in the Seoul metropolitan area: implication for ozone abatement, Atmos. Environ., 243, 117846.
  3. Cheng, Y., Zheng, G., Wei, C., Mu, Q., Zheng, B., Wang, Z., Gao, M., Zhang, Q., He, K., Carmichael, G., Poschl, U., Su, H., 2016, Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China, Sci. Adv., 2, e1601530.
  4. Chu, B., Ma, Q., Liu, J., Ma, J., Zhang, P., Chen, T., Feng, Q., Wang, C., Yang, N., Ma, H., Ma, J., Russell, A. G., He, H., 2020, Air pollutant correlations in China: secondary air pollutant responses to NOx and SO2 control, Environ. Sci. Technol. Lett., 7, 695-700. https://doi.org/10.1021/acs.estlett.0c00403
  5. Chung, Y. S., Chung, J. S., 1991, On surface ozone observed in the Seoul metropolitan area during 1989 and 1990, J. Korean Soc. Atmos., 7, 169-179.
  6. Costabile, F., Allegrini, I., 2007, Measurements and analyses of nitrogen oxides and ozone in the yard and on the roof of a street-canyon in Suzhou, Atmos. Environ., 41, 6637-6647. https://doi.org/10.1016/j.atmosenv.2007.04.018
  7. Du, X., Tang, W., Cheng, M., Zhang, Z., Li, Y., Li, Y., Meng, F., 2022, Modeling of spatial and temporal variations of ozone-NOx-VOC sensitivity based on photochemical indicators in China, J. Environ. Sci., 114, 454-464. https://doi.org/10.1016/j.jes.2021.12.026
  8. Duenas, C., Fernandez, M. C., Canete, S., Carretero, J., Liger, E., 2002, Assessment of ozone variations and meteorological effects in an urban area in the Mediterranean Coast, Sci. Total Environ., 299, 97-113. https://doi.org/10.1016/S0048-9697(02)00251-6
  9. Ghim, Y. S., Chang, Y. S., 2000, Characteristics of ground-level ozone distributions in Korea for the period of 1990-1995, J. Geophys. Res. Atmos., 105, 8877-8890. https://doi.org/10.1029/1999JD901179
  10. Han, S., Bian, H., Feng, Y., Liu, A., Li, X., Zeng, F., Zhang, X., 2011, Analysis of the relationship between O3, NO and NO2 in Tianjin, China, Aerosol Air Qual. Res., 11, 128-139. https://doi.org/10.4209/aaqr.2010.07.0055
  11. Itahashi, S., Irie, H., Shimadera, H., Chatani, S., 2022, Fifteen-year trends (2005-2019) in the satellite-derived ozone-sensitive regime in East Asia: A gradual shift from VOC-Sensitive to NOx-Sensitive, Remote Sens., 14, 4512-4531. https://doi.org/10.3390/rs14184512
  12. Jia, M., Zhao, T., Cheng, X., Gong, S., Zhang, X., Tang, L., Liu, D., Wu, X., Wang, L., Chen, Y., 2017, Inverse relations of PM2.5 and O3 in air compound pollution between cold and hot seasons over an urban area of East China, Atmos., 8, 59-70. https://doi.org/10.3390/atmos8030059
  13. Kang, Y. H., Kim, Y. K., Hwang, M. K., Jeong, J. H., Kim, H., Kang, H. S., 2019, Spatial-temporal variations in surface ozone concentrations in Busan metropolitan area, J. Environ. Sci. Int., 28, 169-182. https://doi.org/10.5322/JESI.2019.28.2.169
  14. Kim, J., Ghim, Y. S., Han, J. S., Park, S. M., Shin, H. J., Lee, S. B., Kim, J., Lee, G., 2018, Long-term trend analysis of Korean air quality and its implication to current air quality policy on ozone and PM10, J. Korean Soc. Atmos., 34, 1-15. https://doi.org/10.5572/KOSAE.2018.34.1.001
  15. KEC (Korea Environment Corporation), 2019, Airkorea, https://www.airkorea.or.kr.
  16. KMA (Korea Meteorological Administration), 2019, https://data.kma.go.kr.
  17. Lee, G., Jang, Y., Lee, H., Han, J. S., Lim, K. R., Lee, M., 2008, Characteristic behavior of peroxyacetyl nitrate (PAN) in Seoul megacity, Korea, Chemosphere, 73, 619-628. https://doi.org/10.1016/j.chemosphere.2008.05.060
  18. Lee, H. J., Chang, L. S., Jaffe, D. A., Bak, J., Liu, X., Abad, G. G., Jo, H. Y., Jo, Y. J., Lee, J. B., Kim, C. H., 2021, Ozone continues to increase in East Asia despite decreasing NO2: causes and abatements, Remote Sens., 13, 2177-2193. https://doi.org/10.3390/rs13112177
  19. Lee, H. J., Chang, L. S., Jaffe, D. A., Bak, J., Liu, X., Abad, G. G., Jo, H. Y., Jo, Y. J., Lee, J. B., Yang, G. H., Kim, J. M., Kim, C. H., 2022, Satellite-based diagnosis and numerical verification of ozone formation regimes over nine megacities in East Asia, Remote Sens., 14, 1285-1301. https://doi.org/10.3390/rs14051285
  20. Li, L., Chen, C. H., Huang, C., Huang, H. Y., Zhang, G. F., Wang, Y. J., Wang, H. L., Lou, S. R., Qiao, L. P., Zhou, M., Chen, M. H., Chen, Y. R., Streets, D. G., Fu, J. S., Jang, C. J., 2012, Process analysis of regional ozone formation over the Yangtze River Delta, China using the Community Multi-scale Air Quality modeling system, Atmos. Chem. Phys., 12, 10971-10987. https://doi.org/10.5194/acp-12-10971-2012
  21. Li, S., Wang, T., Huang, X., Pu, X., Li, M., Chen, P., Yang, X. Q., Wang, M., 2018, Impact of East Asian summer monsoon on surface ozone pattern in China, J. Geophys. Res. Atmos., 123, 1401-1411. https://doi.org/10.1002/2017JD027190
  22. Li, Y., Cheng, M., Guo, Z., He, Y., Zhang, X., Cui, X., Chen, S., 2020, Increase in surface ozone over Beijing-Tianjin-Hebei and the surrounding areas of China inferred from satellite retrievals, 2005-2018, Aerosol Air Qual. Res., 20, 2170-2184. https://doi.org/10.4209/aaqr.2019.11.0603
  23. Li, Y., Lau, A. K. H., Fung, J. C. H., Zheng, J., Liu, S., 2013, Importance of NOx control for peak ozone reduction in the Pearl River Delta region, J. Geophys. Res. Atmos., 118, 9428-9443. https://doi.org/10.1002/jgrd.50659
  24. Lin, J. T., Youn, D., Liang, X. Z., Wuebbles, D. J., 2008, Global model simulation of summertime U.S. ozone diurnal cycle and its sensitivity to PBL mixing, spatial resolution, and emissions, Atmos. Environ., 42, 8470-8483. https://doi.org/10.1016/j.atmosenv.2008.08.012
  25. Lu, K., Fuchs, H., Hofzumahaus, A., Tan, Z., Wang, H., Zhang, L., Schmitt, S. H., Rohrer, F., Bohn, B., Broch, S., Dong, H., Gkatzelis, G. I., Hohaus, T., Holland, F., Li, X., Liu, Y., Liu, Y., Ma, X., Novelli, A., Schlag, P., Shao, M., Wu, Y., Wu, Z., Zeng, L., Hu, M., Kiendler-Scharr, A., Wahner, A., Zhang, Y., 2019, Fast photochemistry in wintertime haze: consequences for pollution mitigation strategies, Environ. Sci. Technol., 53, 10676-10684. https://doi.org/10.1021/acs.est.9b02422
  26. Ma, X., Huang, J., Zhao, T., Liu, C., Zhao, K., Xing, J., Xiao, W., 2021, Rapid increase in summer surface ozone over the North China Plain during 2013-2019: a side effect of particulate matter reduction control?, Atmos. Chem. Phys., 21, 1-16. https://doi.org/10.5194/acp-21-1-2021
  27. Mahato, S., Pal, S., Ghosh, K. G., 2020, Effect of lockdown amid COVID-19 pandemic on air quality of the megacity Delhi, India, Sci. Total Environ., 730, 139086-139108. https://doi.org/10.1016/j.scitotenv.2020.139086
  28. MOE (Ministry Of Environment), 2021, Annual report of air quality in Korea, 2020.
  29. Oh, I. B., Kim, Y. K., Lee, H. W., Kim, C. H., 2006, An Observational and numerical study of the effects of the late sea breeze on ozone distributions in the Busan metropolitan area, Korea, Atmos. Environ., 40, 1284-1298. https://doi.org/10.1016/j.atmosenv.2005.10.049
  30. Oltmans, S. J., Levy, H., 1994, Surface ozone measurements from a global network, Atmos. Environ., 28, 9-24. https://doi.org/10.1016/1352-2310(94)90019-1
  31. Park, S. U., Lee, Y. H., 2001, Spatial distribution of wet deposition of nitrogen in South Korea, Atmos. Environ., 36, 619-628. https://doi.org/10.1016/S1352-2310(01)00489-7
  32. Pudasainee, D., Sapkota, B., Shrestha, M. L., Kaga, A., Kondo, A., Inoue, Y., 2006, Ground level ozone concentrations and its association with NOx and meteorological parameters in Kathmandu Valley, Nepal, Atmos. Environ., 40, 8081-8087. https://doi.org/10.1016/j.atmosenv.2006.07.011
  33. Pugliese, S. C., Murphy, J. G., Geddes, J. A., Wang, J. M., 2014, The impacts of precursor reduction and meteorology on ground-level ozone in the Greater Toronto Area, Atmos. Chem. Phys., 14, 8197-8207. https://doi.org/10.5194/acp-14-8197-2014
  34. Sanchez, M. L., Torre, B. D., Garcia, M. A., Pereza, I., 2007, Ground-level ozone and ozone vertical profile measurements close to the footfills of the Guadarrama Mountain Range (Spain), Atmos. Environ., 41, 1302-1314. https://doi.org/10.1016/j.atmosenv.2006.09.047
  35. Shin, B., Lee, M., Lee, J., Shim, J. S., 2007, Seasonal and Diurnal Variations of Surface Ozone at Ieodo in the East China Sea, J. Korean Soc. Atmos., 23, 631-639. https://doi.org/10.5572/KOSAE.2007.23.6.631
  36. Sicard, P., Marco, A. D., Agathokleous, E., Feng, Z., Xu, X., Paoletti, E., Rodriguez, J. J. D., Calatayud, V., 2020, Amplified ozone pollution in cities during the COVID-19 lockdown, Sci. Total Environ., 735, 139542-139551. https://doi.org/10.1016/j.scitotenv.2020.139542
  37. Sillman, S., 1999, The relation between ozone, NOx and hydrocarbons in urban and polluted rural environments, Atmos. Environ., 33, 1821-1845. https://doi.org/10.1016/S1352-2310(98)00345-8
  38. Tu, J., Xia, Z. G., Wang, H., Li, W., 2007, Temporal variations in surface ozone and its precursors and meteorological effects at an urban site in China, Atmos. Res., 85, 310-337. https://doi.org/10.1016/j.atmosres.2007.02.003
  39. U.S. EPA (Environmental Protection Agency), 1998, Guideline on data handling conventions for the 8-hour ozone NAAQS, https://www3.epa.gov/ttn/naaqs/aqmguide/collection/cp2_old/19981201_oaqps_epa-454_r-99-017.pdf.
  40. U.S. EPA (Environmental Protection Agency), 2006, Air quality criteria for ozone and related photochemical oxidants, https://www3.epa.gov/ttn/naaqs/aqmguide/collection/cp2/20060228_ord_epa-600_r-05-004af_ozone_criteria_document_vol-1.pdf.
  41. Vellingiri, K., Kim, K. H., Jeon, J. Y., Brown, R. J. C., Jung, M. C., 2015, Changes in NOx and O3 concentrations over a decade at a central urban area of Seoul, Korea, Atmos. Environ., 112, 116-125. https://doi.org/10.1016/j.atmosenv.2015.04.032
  42. Wang, T., Xue, L. K., Brimblecombe, P., Lam, Y. F., Li, L., Zhang, L., 2017, Ozone pollution in China: a review of concentrations, meteorological influences, chemical precursors, and effects, Sci. Total Environ., 575, 1582-1596. https://doi.org/10.1016/j.scitotenv.2016.10.081
  43. Wasti, S., Wang, Y., 2022, Spatial and temporal analysis of HCHO response to drought in South Korea, Sci. Total Environ., 852, 157451-157461. https://doi.org/10.1016/j.scitotenv.2022.158451
  44. Wie, J., Moon, B. K., 2018, Impact of the Western North Pacific subtropical high on summer surface ozone in the Korean Peninsula, Atmos. Pollut. Res., 9, 655-661. https://doi.org/10.1016/j.apr.2017.12.012
  45. Winkler, P., 1988, Surface ozone over the Atlantic, J. Atmos. Chem., 7, 73-91. https://doi.org/10.1007/BF00048255
  46. Yeo, M. J., Kim, Y. P., 2021, Long-term trends of surface ozone in Korea, J. Clean. Prod., 294, 125352-125362. https://doi.org/10.1016/j.jclepro.2020.125352