DOI QR코드

DOI QR Code

호소생태계 건강성 평가를 위한 동물플랑크톤 MMI의 국내 적용 연구

Application of Zooplankton Index for Korean Lake Health Assessment; Verification of Community Index for Lake Assessment Using Multi Metric

  • 최예림 (경희대학교 환경학및환경공학과) ;
  • 오혜지 (경희대학교 환경학및환경공학과) ;
  • 김현준 (경희대학교 환경학및환경공학과) ;
  • 홍근혁 (경희대학교 환경학및환경공학과) ;
  • 이대희 (경희대학교 환경학및환경공학과) ;
  • 곽인실 (전남대학교 해양융합과학과) ;
  • 지창우 (전남대학교 수산과학연구소) ;
  • 박영석 (경희대학교 생물학과) ;
  • 김용재 (대진대학교 생명과학과) ;
  • 장광현 (경희대학교 환경학및환경공학과)
  • Yerim Choi (Department of Environmental Science and Engineering, Kyung Hee University) ;
  • Hye-Ji Oh (Department of Environmental Science and Engineering, Kyung Hee University) ;
  • Hyunjoon Kim (Department of Environmental Science and Engineering, Kyung Hee University) ;
  • Geun-Hyeok Hong (Department of Environmental Science and Engineering, Kyung Hee University) ;
  • Dae-Hee Lee (Department of Environmental Science and Engineering, Kyung Hee University) ;
  • Ihn-Sil Kwak (Department of Ocean Integrated Science, Chonnam National University) ;
  • Chang Woo Ji (Fisheries Science Institute, Chonnam National University) ;
  • Young-Seuk Park (Department of Biology, Kyung Hee University) ;
  • Yong-Jae Kim (Department of Life Science, Daejin University) ;
  • Kwang-Hyeon Chang (Department of Environmental Science and Engineering, Kyung Hee University)
  • 투고 : 2023.03.14
  • 심사 : 2023.03.30
  • 발행 : 2023.03.31

초록

본 연구에서는 국내 3개 호소에서 채집된 동물플랑크톤을 이용하여 호소생태계 건강성 평가에 적합한 동물플랑크톤 지수를 선별해내고자 하였다. 미국 EPA의 National Lake Assessment에서 사용된 후보지수를 국내 적용에 적합하도록 변형하였다. 변형된 지수를 MMI 개발 개요에 맞춰 개별 지수의 적합성 평가, 교란 요인에 대한 반응성 평가, 각 범주 내 중복 지수의 제거 과정을 거쳐 최종적인 후보지수를 선별하여 제시하였다. 6개 범주 내에서 범주별 최대 5개의 지수가 선별되어 최종적으로 19개 지수가 제시되었으며, 모든 분류군에서 종 다양성이, 대형 지각류와 요각류의 경우 생체량이, 소형 지각류와 윤충류의 경우에는 개체밀도가 효과적인 평가 지표로써 사용될 수 있는 것으로 분석되었다. 본 연구에서는 동물플랑크톤을 이용한 국내 호소 건강성 평가 지수의 개발에 있어 적합한 방법을 제시하여 이후 동물플랑크톤 MMI 연구에 활용될 수 있도록 하였다.

Recently, Korean government has introduced Multi Metric Indices (MMI) using various biocommunity information for aquatic ecosystem monitoring and ecosystem health assessment at the national level. MMI is a key tool in national ecosystem health assessment programs. The MMI consists of indices that respond to different target environmental factors, including environmental disturbance (e.g. nutrients, hydrological and hydraulic situation of site etc.). We used zooplankton community information collected from Korean lakes to estimate the availability of candidate zooplankton MMI indices that can be used to assess lake ecosystem health. First, we modified the candidate indices proposed by the U.S. EPA to suit Korean conditions. The modified indices were subjected to individual index suitability analysis, correlation analysis with environmental variables, and redundancy analysis among indices, and 19 indices were finally selected. Taxonomic diversity was suggested to be an important indicator for all three taxonomic groups (cladoceran, copepod, rotifer), on the other hand, the indices using biomass for large cladocerans and copepods, while the indices using abundance were suggested for small cladocerans and rotifers.

키워드

과제정보

본 결과물은 환경부의 재원으로 한국환경산업기술원 수생태계 건강성 확보 기술개발사업의 지원을 받아 연구되었습니다(과제번호: 2020003050003).

참고문헌

  1. Barbour, M.T. 1999. Rapid bioassessment protocols for use in wadeable streams and rivers: periphyton, benthic macroinvertebrates and fish. US Environmental Protection Agency, Office of Water. 
  2. Beaver, J.R., C.E. Tausz, T.R. Renicker, G.C. Holdren, D.M. Hosler, E.E. Manis, K.C. Scotese, C.E. Teacher, B.T. Vitanye and R.M. Davidson. 2014. The late summer crustacean zooplankton in western USA reservoirs reflects ecoregion, temperature and latitude. Freshwater Biology 59(6): 1173-1186.  https://doi.org/10.1111/fwb.12338
  3. Bohmer, J., C. Rawer-Jost and A. Zenker. 2004. Multimetric assessment of data provided by water managers from Germany: assessment of several different types of stressors with macrozoobenthos communities. Integrated Assessment of Running Waters in Europe, 215-228. 
  4. Branstrator, D.K. 1998. Predicting diet composition from body length in the zooplankton predator Leptodora kindti. Limnology and Oceanography 43(3): 530-535.  https://doi.org/10.4319/lo.1998.43.3.0530
  5. Bruce, L.C., D. Hamilton, J. Imberger, G. Gal, M. Gophen, T. Zohary and K.D. Hambright. 2006. A numerical simulation of the role of zooplankton in C, N and P cycling in Lake Kinneret, Israel. Ecological Modelling 193(3-4): 412-436.  https://doi.org/10.1016/j.ecolmodel.2005.09.008
  6. Cortez-Silva, E.E., G. de Souza Santos, M.G.P. Leite and E.M. Eskinazi-Sant'Anna. 2020. Response of cladoceran assemblages to restoration of riparian vegetation: A case study in a tropical reservoir of Brazil. Limnologica 85: 125822. 
  7. Davis, W.S. and T.P. Simon (Eds.). 1995. Biological assessment and criteria: tools for water resource planning and decision making. CRC Press. 
  8. Ejsmont-Karabin, J. 2012. The usefulness of zooplankton as lake ecosystem indicators: rotifer trophic state index. Polish Journal of Ecology 60(2): 339-350. 
  9. Ejsmont-Karabin, J. and A. Karabin. 2013. The suitability of zooplankton as lake ecosystem indicators: crustacean trophic state index. Polish Journal of Ecology 61(3): 561-573. 
  10. Faber, M. and D. Rapport. 1992. Ecosystem health: new goals for environmental management. Island Press. 
  11. Feld, C.K. 2004. Identification and measure of hydromorphological degradation in Central European lowland streams. Integrated Assessment of Running Waters in Europe, 69-90. 
  12. Flotemersch, J.E., K. Blocksom, J.J. Hutchens Jr and B.C. Autrey. 2006. Development of a standardized large river bioassessment protocol(LR-BP) for macroinvertebrate assemblages. River Research and Applications 22(7): 775-790.  https://doi.org/10.1002/rra.935
  13. Forio, M.A.E., N. De Troyer, K. Lock, F. Witing, L. Baert, N.D. Saeyer, G. Risnoveanu, C. Popescu, F.J. Burdon, B. Kupilas, N. Friberg, P. Boets, M. Volk, B.G. McKie and P. Goethals. 2020. Small patches of riparian woody vegetation enhance biodiversity of invertebrates. Water 12(11): 3070. 
  14. Frisch, D., J.E. Havel and L.J. Weider. 2013. The invasion history of the exotic freshwater zooplankter Daphnia lumholtzi (Cladocera, Crustacea) in North America: a genetic analysis. Biological Invasions 15: 817-828. https://doi.org/10.1007/s10530-012-0329-3
  15. Havens, K.E., T.L. East, J. Marcus, P. Essex, B. Bolan, S. Raymond and J.R. Beaver. 2000. Dynamics of the exotic Daphnia lumholtzii and native macro-zooplankton in a subtropical chain-of-lakes in Florida, USA. Freshwater Biology 4(51): 21-32.  https://doi.org/10.1046/j.1365-2427.2000.00614.x
  16. Hering, D., C.K. Feld, O. Moog and T. Ofenbock. 2006. Cook book for the development of a Multimetric Index for biological condition of aquatic ecosystems: experiences from the European AQEM and STAR projects and related initiatives. The ecological status of European rivers: Evaluation and intercalibration of assessment methods, 311-324. 
  17. Hughes, R.M. and T. Oberdorff. 2020. Applications of IBI concepts and metrics to waters outside the United States and Canada, p. 79-93. In: Assessing the sustainability and biological integrity of water resources using fish communities, CRC Press. 
  18. Hwang, S.J., S.K. Kwun and C.G. Yoon. 2003. Water quality and limnology of Korean reservoirs. Paddy and Water Environment 1: 43-52.  https://doi.org/10.1007/s10333-003-0010-7
  19. Jeppesen, E., P. Noges, T.A. Davidson, J. Haberman, T. Noges, K. Blank, T.L. Lauridsen, M. Sondergaard, C. Sayer, R. Laugaste, L.S. Johansson, R. Bjerring and S.L. Amsinck. 2011. Zooplankton as indicators in lakes: a scientific-based plea for including zooplankton in the ecological quality assessment of lakes according to the European Water Framework Directive (WFD). Hydrobiologia 676: 279-297.  https://doi.org/10.1007/s10750-011-0831-0
  20. Jeppesen, E., J. Peder Jensen, M. Sondergaard, T. Lauridsen and F. Landkildehus. 2000. Trophic structure, species richness and biodiversity in Danish lakes: changes along a phosphorus gradient. Freshwater Biology 45(2): 201-218.  https://doi.org/10.1046/j.1365-2427.2000.00675.x
  21. Joo, G.J., Choi, J.Y., S.K. Kim, S.W. Hong, K.S. Jeong and G.H. La. 2013. Zooplankton Community Distribution and Food Web Structure in Small Reservoirs: Influence of Land Uses around Reservoirs and Kittoral Aquatic Plant on Zooplankton. Korean Journal of Ecology and Environment 46(3): 332-342 [Korean literature]  https://doi.org/10.11614/KSL.2013.46.3.332
  22. Kairesalo, T., I. Tatrai and E. Luokkanen. 1998. Impacts of waterweed (Elodea canadensis Michx) on fish-plankton interactions in the lake littoral. Internationale Vereinigung fur theoretische und angewandte Limnologie: Verhandlungen 26(4): 1846-1851.  https://doi.org/10.1080/03680770.1995.11901058
  23. Kane, D.D., S.I. Gordon, M. Munawar, M.N. Charlton and D.A. Culver. 2009. The Planktonic Index of Biotic Integrity (P-IBI): an approach for assessing lake ecosystem health. Ecological Indicators 9(6): 1234-1247.  https://doi.org/10.1016/j.ecolind.2009.03.014
  24. Karr, J.R. and E.W. Chu, 1999. Restoring Life in Running Waters: Better Biological Monitoring. Island Press, Washington, DC 200pp. 
  25. Klemm, D.J., K.A. Blocksom, F.A. Fulk, A.T. Herlihy, R.M. Hughes, P.R. Kaufmann, D.V. Peck, J.L. Stoddard, W.T. Thoeny, M.B. Griffith and W.S. Davis. 2003. Development and Evaluation of a Macroinvertebrate Biotic Integrity Index (MBII) for Regionally Assessing Mid-Atlantic Highlands Streams. Environmental Management 31(5): 656-669.  https://doi.org/10.1007/s00267-002-2945-7
  26. Ku, D., Y.J. Chae, Y. Choi, C.W. Ji, Y.S. Park, I.S. Kwak, Y.J. Kim, K.H. Chang and H.J. Oh. 2022. Optimal Method for Biomass Estimation in a Cladoceran Species, Daphnia Magna (Straus, 1820): Evaluating Length-Weight Regression Equations and Deriving Estimation Equations Using Body Length, Width and Lateral Area. Sustainability 14(15): 9216. 
  27. Lorenz, A., D. Hering, C.K. Feld and P. Rolauffs. 2004. A new method for assessing the impact of hydromorphological degradation on the macroinvertebrate fauna of five German stream types. Hydrobiologia 516: 207-127. 
  28. Mills, E.L., J.H. Leach, J.T. Carlton and C.L. Secor. 1994. Exotic species and the integrity of the Great Lakes. BioScience 44(10): 666-676.  https://doi.org/10.2307/1312510
  29. Ministry of Environment. 2018. Official Testing Method with Respect to Water Pollution Process. 
  30. Ministry of Environment. 2019a. Guidelines on how to survey and assess the health of aquatic ecosystems_Hydrology_Fv. 
  31. Ministry of Environment. 2019b. Guidelines on how to survey and assess the health of aquatic ecosystems_Estuaries_Fv. 
  32. Mizuno, T. and E. Takahashi. 1999. An illustrated guide to freshwater zooplankton in Japan. Tokai Univ. Press, Tokyo, 532pp. 
  33. Moss, B., D. Stephen, C. Alvarez, E. Becares, W.V.D. Bund, S.E. Collings, E.V. Donk, E.D. Eyto, T. Feldmann, C. Fernandez-Alaez, M. Fernandez-Alaez, R.J.M Franken, F. Garcia-Criado, E.M. Gross, M. Gyllstrom, L.A. Hansson, K. Irvine, A. Jarvalt, J.P. Jensen, E. Jeppesen, T. Kairesalo, P. Kornijow, T. Krause, H. Kunnap, A. Laas, E. Lill, B. Lorens, H. Luup, M.R. Miracle, P. Noges, T. Noges, M. Nykanen, I. Ott, W. Peczula, E.T.H.M. Peeters, G. Phillips, S. Romo, V. Russell, J. Salujoe, M. Scheffer, K. Siewertsen, H. Smal, C. Tesch, T. Timm, L. Tuvikene, I. Tonno, T. Virro, E. Vicente and D. Wilson. 2003. The determination of ecological status in shallow lakes-a tested system (ECOFRAME) for implementation of the European Water Framework Directive. Aquatic Conservation: Marine and Freshwater Ecosystems 13(6): 507-549.  https://doi.org/10.1002/aqc.592
  34. Mussels, Z., E. Watermilfoil, S. Lamprey, P. Loosestrife, R. Goby and E. Ruffe. 2014. Lake Superior Aquatic Invasive Species Complete Prevention Plan. 
  35. Nurminen, L.K. and J.A. Horppila. 2002. A diurnal study on the distribution of filter feeding zooplankton: Effect of emergent macrophytes, pH and lake trophy. Aquatic Sciences 64: 198-206.  https://doi.org/10.1007/s00027-002-8067-8
  36. Ochocka, A. 2021. ZIPLAS: Zooplankton Index for Polish Lakes' Assessment: a new method to assess the ecological status of stratified lakes. Environmental Monitoring and Assessment 193(10): 664. 
  37. Rapport, D.J., R. Costanza and A.J. McMichael. 1998. Assessing ecosystem health. Trends in Ecology & Evolution 13(10): 397-402.  https://doi.org/10.1016/S0169-5347(98)01449-9
  38. Schaeffer, D.J., E.E. Herricks and H.W. Kerster. 1988. Ecosystem health: I. Measuring ecosystem health. Environmental Management 12: 445-455.  https://doi.org/10.1007/BF01873258
  39. Stamou, G., M. Katsiapi, M. Moustaka-Gouni and E. Michaloudi. 2019. Grazing potential-A functional plankton food web metric for ecological water quality assessment in Mediterranean lakes. Water 11(6): 1274. 
  40. Tessier, A.J. and R.J. Horwitz. 1990. Influence of water chemistry on size structure of zooplankton assemblages. Canadian Journal of Fisheries and Aquatic Sciences 47(10): 1937-1943.  https://doi.org/10.1139/f90-218
  41. US EPA (US Environmental Protection Agency). 2009. National lakes assessment: a collaborative survey of the nation's lakes. Washington, DC: U.S., Environmental Protection Agency, Office of Water and Office of Research and Development, 118. 
  42. US EPA (US Environmental Protection Agency). 2016. National Rivers and Streams Assessment 2008-2009: a collaborative survey. Washington, DC: U.S., Environmental Protection Agency, Office of Water and Office of Research and Development, 131. 
  43. Van Egeren, S.J., S.I. Dodson, B. Torke and J.T. Maxted. 2011. The relative significance of environmental and anthropogenic factors affecting zooplankton community structure in Southeast Wisconsin Till Plain lakes. Hydrobiologia 668: 137-146.  https://doi.org/10.1007/s10750-011-0636-1
  44. Walz, N., S.S. Sarma and U. Benker 1995. Egg size in relation to body size in rotifers: an indication of reproductive strategy?. In Rotifera VII: Proceedings of the Seventh Rofifer Symposium, held in Mikolajki, Poland, 6-11 June 1994 (p. 165-170). Springer Netherlands. 
  45. Work, K. and M. Gophen 1999. Environmental variability and the population dynamics of the exotic Daphnia lumholtzi and native zooplankton in Lake Texoma, USA. Hydrobiologia 405: 11-23.  https://doi.org/10.1023/A:1003742709605