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ABSTRACT

Neutrophils are professional phagocytes that provide defense against invading pathogens 
through phagocytosis, degranulation, generation of ROS, and the formation of neutrophil 
extracellular traps (NETs). Although long been considered as short-lived effector cells 
with limited biosynthetic activity, recent studies have revealed that neutrophils actively 
communicate with other immune cells. Neutrophils employ various types of soluble 
mediators, including granules, cytokines, and chemokines, for crosstalk with immune cells. 
Additionally, ROS and NETs, major arsenals of neutrophils, are utilized for intercellular 
communication. Furthermore, extracellular vesicles play a crucial role as mediators of 
neutrophil crosstalk. In this review, we highlight the extracellular mechanisms of neutrophils 
and their roles in crosstalk with other cells.
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INTRODUCTION

Neutrophils are one of the first responders of immune system and have long been considered 
as short-lived effector cells with limited biosynthetic activity (1,2). They provide defense 
against invading pathogens through phagocytosis, degranulation, generation of ROS, 
and the formation of neutrophil extracellular trap (NET) (3). In addition to these defense 
mechanisms, neutrophils have been shown to have additional biological functions, such 
as the release of soluble factors, cytokines, chemokines, growth factors, alarmins, and 
specialized pro-resolving mediators (4-7). They also generate extracellular vesicles (EVs) 
that exert either proinflammatory or anti-inflammatory responses (8,9). Recent studies 
have also shown that neutrophils play a role in antigen (Ag) presentation by releasing 
immunomodulatory molecules (4,6,7). This suggests that neutrophils actively communicate 
with other innate and adaptive immune cells rather just exerting their phagocytic role (7,10).

Neutrophils are known to indirectly regulate adaptive immune cells by regulating innate 
immune cells, such as macrophages or dendritic cells (DCs). However, recent studies 
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presentation (6). Neutrophils can populate in secondary lymphoid tissues, such as spleen and 
lymph nodes, and present Ags to adaptive immune cells through expression of MHC class II 
(6,7). They also interact with other immune cells through contact-dependent mechanisms 
and soluble mediators, leading to recruitment, activation, and maturation of macrophages, 
DCs, NK cells, B cells, and T cells (2, 9,11-16).

Neutrophils also generate EVs that mediate immune modulation and cell-to-cell 
communications with both immune and non-immune cells (8,9). Neutrophils thus have 
emerged as key components of cell crosstalk rather than merely bystander of complex immune 
responses (Fig. 1). In this review, we highlight the extracellular arsenals of neutrophils, such as 
soluble mediators, NETs, and EVs, and their role in crosstalk with other cells.

NEUTROPHIL-DERIVED SOLUBLE MEDIATORS

Neutrophils are equipped with various types of soluble mediators, such as granules, 
cytokines, and chemokines. During differentiation, neutrophils produce different types of 
granule proteins which are stored within intracellular pools (17). The production of these 
granules is stringently controlled across different stages of differentiation (1,18). Notably, 
neutrophils rapidly release these pre-formed granules in response to external stimuli (18). 
Neutrophils serve as a significant source for over 70 distinct cytokines, chemokines, and 
growth factors (17). Neutrophils not only store pre-formed cytokines, but also synthesize 
cytokines de novo. Mature neutrophils have mRNAs for cytokine (17), hence they de novo 
synthesize cytokines in response to external stimulation such as TLR 8 agonists (19). These 
soluble mediators are used by neutrophils for intercellular communication (Fig. 2).

Neutrophils are equipped with various types of granules, which are categorized into four 
groups: i) primary(azurophil) granules, containing myeloperoxidase (MPO), neutrophil 
elastase (NE), cathepsin G, proteinase 3, defensin, lysozyme, azurocidin, arginase, and serine 
proteases; ii) secondary(specific) granules, containing lysozyme, lactoferrin, nicotinamide 
adenine dinucleotide phosphate oxidase components, cathelicidin, collagenase, and 
plasminogen activator inhibitor-1; iii) tertiary granules, containing gelatinase, leukolysin, 
collagenase, cathepsin D, and neutrophil gelatinase-associated lipocalin; and iv) secretory 
vesicles, containing complement receptors, Fc receptors, chemokine receptors, adhesion 
molecules, cytokines, chemokines, and growth factors (1). Neutrophils release these granule 
proteins to extracellular milieu through exocytosis (1,17). Neutrophils eliminate pathogens 
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Figure 1. Overview of neutrophil interactions and immune responses. As the first responders of immune system, 
neutrophils employ a variety of defense mechanisms against pathogens. These mechanisms include granule 
release, production of ROS, formation of NETs, and secretion of cytokines, chemokines, and EVs. These arsenals 
not only facilitate the elimination of pathogens, but also serve as means for neutrophils to communicate with 
neighboring immune cells.



through antimicrobial activity of these granules and also utilize them for transmigration 
through tissue destruction. However, these granules also allow intercellular communications 
by neutrophils.

NE induces differentiation of macrophages into a pro-inflammatory phenotype through 
activation of the Srk kinase family (20) and attenuates allostimulatory ability of DCs through 
skewing maturation of DCs into TGF-β secreting cells (21). MPO secreted by neutrophils 
inhibits DC activation through its catalytic activity, suppressing adaptive functions of DCs 
such as migration, Ag uptake, and Ag processing (22). In contrast, MPO and gelatinase 
are essential for DC migration into draining lymph nodes and subsequent T cell priming 
in contact hypersensitivity (23). Cathepsin G derived from neutrophils induce chemotaxis 
of macrophages and activates them to produce pro-inflammatory cytokines, resulting 
in increased susceptibility to acute HIV-1 infection (24). Human neutrophil peptide 1 
(α-defensin) stimulates DCs to produce IFN-α by activating and promoting the nuclear 
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Figure 2. Intercellular crosstalk by neutrophils through soluble mediators. Neutrophils employ various soluble mediators, including granules, cytokines, 
chemokines, and ROS, for intercellular communication with neighboring immune cells. Neutrophils activate macrophages through IL-17A, protease, NE, and 
cathepsin G, and induce macrophage migration via CCL2, CXCL8, and IL-18. While neutrophils suppress DC functions through NEs, MPO, and LL-37, they enhance 
DC activities via HNP1. Granules and chemokines released by neutrophils stimulate DC migration. Neutrophils also communicate with adaptive immune cells 
through soluble mediators. Neutrophils inhibit T cell function through Arg, and ROS, and promote differentiation into Th17 cells via Arg, LL-37, and ROS. Certain 
granule proteins, such as defensin and azurocidin, induce proinflammatory cytokine production and apoptosis in CD4+ T cells, while chemokines induce 
chemotaxis of CD4+ T cells. LL-37 triggers apoptosis in Tregs. Arg, NO, and TNF-α inhibit functions of CD8+ T cells through suppression of proliferation and 
induction of apoptosis, resulting in the inhibition of anti-tumor activities of CD8+ T cells. HNP1 rather enhances the function of CD8+ T cell. Neutrophils also 
communicate with B cells via BAFF, APRIL, and IL-21. 
HNP1, human neutrophil peptide 1; Arg, arginase; NO, nitric oxide.



translocation of IFN regulatory factor 1 (IRF1) (25). Indeed, defensin triggers the secretion 
of proinflammatory cytokines such as IFN-γ, IL-2, and IL-8 from T cells through NF-κB 
activation, and also induce T cell apoptosis (26). Defensin and azurocidin induce chemotaxis 
and regulate functions of naïve T cells and DCs (27,28). Proteases released from neutrophils 
prime macrophages for more effective oxidative response against microorganism and tumor 
cells (29). Arginase released from neutrophils suppresses the proliferation, activation, and 
cytokine synthesis in T cells (30,31) and promotes Th17 cell differentiation (32). Arginase 
generated from granulocytic myeloid derived suppressor cells (G-MDSCs) suppress 
proliferation of both CD4+ and CD8+ T cells (33). LL-37, a member of the cathelicidin family 
of antimicrobial peptides, inhibits DC maturation and activation triggered by TLR ligands, 
resulting in a reduced ability to activate T cells (34). LL-37 has a broader role beyond its effect 
on DCs. LL-37 suppresses the differentiation of Th1 cells while promoting IL-17A production 
from T cells by enhancing aryl hydrocarbon receptor and RORγt expression in a TGF-β 
dependent manner (35). Moreover, LL-37 induces granzyme-mediated apoptosis in Tregs and 
stimulated CD8+ T cells (36,37).

Neutrophils are also major sources of chemokines. Activated neutrophils release CXCL1, 
CXCL8 (also known as IL-8), CXCL9 (monokine induced by gamma IFN), CXCL10 (IFN 
gamma-induced protein 10), CXCL11 (IFN-inducible T-cell alpha chemoattractant), CXCL12 
(stromal cell-derived factor 1), CXCL13 (B cell-attracting chemokine 1), CCL2 (MCP-1), CCL3 
(MIP-1 α), CCL4 (MIP-1β), CCL17 (MIP-3β), and CCL20 (MIP-3α). These neutrophil-derived 
chemokines orchestrate the recruitment of various immune cells, including monocytes, 
macrophages, DCs, NK cells, various T cell subsets, resulting in an amplification of immune 
responses (27). Neutrophils release CCL2, recruiting macrophages and enhancing the 
replication of HIV (38). Neutrophils synthesize chemokines de novo and recruit immature DCs 
to the site of infection via CCL3, CCL4, CCL5, and CCL20 during Toxoplasma gondii infection 
(39). Bacillus Calmette-Guérin (BCG)-activated neutrophils produce chemokines that 
promote T cell chemotaxis, thereby enhancing the effectiveness of BCG immunotherapy (40). 
Furthermore, activated neutrophils attract various T cell subsets, including Th1, Th17, naïve 
T cells and CD8+ T cells, to inflammation sites through the release of chemokines such as 
CCL2, CXCL9, CXCL10, CXCL11, CCL17, CCL18, and CCL20 (27).

In addition to chemokines, neutrophils produce various cytokines and growth factors 
including IL-1β, IL-1ra (IL-1 receptor antagonist), IL-6, IL-12, IL-17A, IL-18, IL-21, IFN-α, 
TGF-β1, TNF-α, G-CSF, M-CSF, and GM-CSF (28,41,42). While many of these neutrophil-
derived cytokines foster proinflammatory responses, they also mediate intercellular 
communication between neutrophils and other immune cells. Neutrophil derived IL-17A 
coordinates IFN-γ-mediated programming of M1 proinflammatory macrophages during 
acute pneumonic plague (43). IL-18, another cytokine produced by neutrophils, is involved 
in recruitment of macrophages and replication of R5HIV (38). TNF-α released from 
tumor-associated neutrophils (TANs) triggers apoptosis of non-activated CD8+ T cells and 
inhibits their anti-tumor activity (44). Inflammatory cytokines derived from BCG-activated 
neutrophils also indirectly stimulate T cell chemotaxis and improve effectiveness of BCG 
immunotherapy (40).

Neutrophils also produce large amounts of ROS in response to external stimulation, causing 
oxidative damage against pathogens. However, neutrophils utilize ROS production as a 
localized signaling mechanism to communicate with neighboring immune cells (45,46). 
Both mature neutrophils and G-MDSCs utilize localized ROS production to suppress T cell 
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immune responses (46,47). Additionally, TANs inhibit the proliferation of IL-17 producing T 
cells through ROS production (48). Furthermore, nitric oxide released from TANs impairs the 
anti-tumor activity of CD8+ T cells (44).

Neutrophils also communicate with nearby immune cells through expression of certain 
ligands. They express B-cell activating factor (BAFF) and a proliferation-inducing ligand 
(APRIL), both of which are crucial for the survival, maturation, and differentiation of B cells 
(42). Neutrophil-derived BAFF drives protective B cell immunity against lethal Salmonella 
typhimurium infection by fostering expansion of B cells and promoting IgM responses (49). B 
helper neutrophils, found in the marginal zone of secondary lymphoid tissue, secrete higher 
amounts of BAFF, APRIL, and IL-21, thereby activating marginal B cells (42). Moreover, 
APRIL produced by inflammation-recruited neutrophils contributes to establishment of 
plasma cell niches in mucosa-associated lymphoid tissue, ensuring sustained local Ab 
production (50).

NETs

NETs are complex structures composed of extracellular DNA, granule proteins, and histones. 
They were first identified as an arsenal of neutrophils to trap and eliminate pathogens 
extracellularly (51,52). Initial studies on NETs focused on their role in inflammation, but 
recent findings have uncovered their wider biological implications that extend beyond their 
antimicrobial activities (Fig. 3). NETs have been associated with a range of immunological 
diseases, including autoimmune diseases, cardiovascular diseases, pulmonary diseases, 
thrombosis, sepsis, and cancer (reviewed in (52,53)). Furthermore, the persistence of NETs 
in circulation provides a crucial source of autoantigen that incites autoantibody production, 
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Figure 3. Intercellular crosstalk by neutrophils through NET. NETs, composed of DNA, granule proteins, and histones, regulate neighboring immune cells either 
directly or via tangled granule proteins and histones. They stimulate macrophages to produce inflammatory cytokines and induce monocyte differentiation into 
anti-inflammatory macrophages through reduced IL-4 expression. NETs and their granule proteins recruit DCs, trigger inflammatory cytokine production, and 
induce upregulation of activation marker expressions. Prolonged exposure to NETs cause apoptosis of macrophages and DCs through mitochondrial dysfunction. 
NETs and granule proteins also activate memory B cells, stimulate the differentiation of naïve B cells into plasma cells, and drive auto-antibody production in 
B cells. NETs exhibit ambivalent effects on T cells, leading to either activation or exhaustion. NETs either stimulate or inhibit the differentiation of Tregs, while 
consistently inducing Th17 cell differentiation. 
SLPI, secretory leukoprotease inhibitor; HMGB1, high mobility group box 1; HNP1, human neutrophil peptide 1; HLA-DR, human leukocyte antigen-DR isotype.



thereby exacerbating autoimmune reactions (reviewed in (5,54)). Moreover, NETs can directly 
stimulate various immune cells, such as B cells, T cells, and Ag-presenting cells, leading to 
autoimmune reactions (reviewed in (5,54)). Additionally, NETs have been shown to entrap 
CD4+ T cells, CD8+ T cells, B cells, and monocytes, contributing to either depletion or loss of 
immune cells during HIV/simian immunodeficiency virus infections (55).

Macrophages are one of the first responders to NETs and play a key role in their clearance. 
NETs trigger the activation of macrophages, facilitating transfer of antimicrobial peptides 
to enhance their antimicrobial functions (11). Additionally, NETs stimulate macrophages 
to produce inflammatory cytokines such as IL-1β, IL-6, IL-17, IL-23, and TNF-α, which 
exacerbate autoimmune and inflammatory diseases (56,57). In patients with Behcet’s disease, 
elevated levels of histone H4 found in NETs have been associated with increased macrophage 
activation and the production of IL-8 and TNF-α (58). NETs produced by neutrophils 
stimulated with IL-8 via CXCR2 exacerbate the progression of atherosclerosis by activating 
TLR9-dependent NF-κB pathways in macrophages (59). Interestingly, NETs can reprogram 
the differentiation of monocytes into anti-inflammatory macrophages by downregulating 
the expression of IL-4 receptors (60). However, prolonged exposure of NETs can induce 
macrophage death through caspase-induced mitochondrial damage and activation of 
apoptosis induced factor-dependent pathways (61). Macrophages play a crucial role in 
clearing NETs from both circulation and tissues. They degrade NETs through extracellular 
digestion and then uptake them through micropinocytosis (62,63). Impaired NET clearance 
by macrophages has been closely associated with aggravation of inflammatory diseases, 
as observed in patients with acute respiratory distress syndrome (ARDS) (64). A failure of 
macrophages to effectively phagocytose NETs triggers pyroptosis of alveolar macrophages, 
leading to exacerbation of inflammation during ARDS (65). Either a complete failure or a 
frustrated phagocytosis of NETs activates innate immune sensors, such as cyclic GMP-AMP 
synthase-STING, leading to type I IFN production in macrophages (66).

DCs are also an important responder of NETs. NETs recruit DCs and activate them via Fc 
fragment of IgG through low affinity IIa receptor (FCγII, CD32), leading to production of 
IFN-α through TLR9 (61,67,68). Certain granule proteins on NETs, such as LL-37, α-defensin, 
β-defensin, high mobility group box 1, MPO, and secretory leukocyte proteinase inhibitor, 
activate plasmacytoid DCs (pDCs) to produce inflammatory cytokines including TNF-α, IL-6, 
and IFN-α during autoimmune diseases (22,67,68). Upon exposure to NETs, pDCs exhibit 
increased surface expressions of CD40, CD80, CD83, CD86, and MHC-II/human leukocyte 
antigen-DR isotype, and elevated secretion of proinflammatory cytokines, such as IL-1β, IL-6, 
IL-8, IL-10, IL-12, and TNF-α (69). However, NETs can hinder differentiation of DCs (60) and 
maturation of LPS-stimulated monocytic DCs (70). Furthermore, prolonged exposure to 
NETs can induce the death of DCs through mitochondrial damage (61). These studies suggest 
the dual roles of NETs on influencing the function of DCs.

Recent studies suggest that NETs also interact with adaptive immune cells. NETs modulate 
T cells through direct contact with TCR signaling (71). NETs prime CD4+ T cells through 
direct contact with TCR, leading to a reduced activation threshold and enhanced Ag-
specific responses (71). Interestingly, NET-exposed CD4+ T cells also exhibit increased 
expressions of activation markers, CD25 and CD69 (71). A similar pattern of activation 
marker expression is found in NET-exposed CD8+ T cells (71). MPO-DNA components in 
NETs, in conjunction with sPD-L1, contribute to the exhaustion and dysfunction of T cells 
within the tumor microenvironment (72). Moreover, NETs bearing PD-L1 have been found 
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to exhaust T cells during ischemia and reperfusion injury in the liver, leading to decreased 
cytokine expressions, dysregulation of mitochondrial function, diminished mitochondrial 
mass, and reduced glucose and lipid uptake (72). NET-associated histones can also drive 
the differentiation and cytokine production in Th17 cells via TLR2/MyD88/STAT3/RORγ-
dependent pathway (14). Additionally, NETs can affect T cell differentiation. NETs induce 
selective differentiation of naïve T cells into Tregs through metabolic reprogramming 
toward mitochondrial oxidative phosphorylation through TLR4 (13). In contrast, NETs 
inhibit Treg differentiation in in vitro and decrease Treg to Th17 cell ratio during neutrophilic 
asthma (73). NETs directly activate memory B cells (10) and promote the progression 
of diffuse B cell lymphoma through TLR9-dependent pathway (74). LL-37 and DNA 
complex in NETs stimulate a polyclonal activation of memory B cells and BCR, leading to 
production of Ab against LL-37 during Systemic Lupus Erythematosus (10). Lysozymes and 
lactoferrin complexes in NETs also activate B cells via TLR9, prompting the production of 
autoantibodies (10). In patients with Bullous Pemphigoid, NETs have been found to induce 
the differentiation of B cells into CD19+ CD38+ plasma cells via p38 MAPK pathway, thereby 
augmenting autoantibody release (9).

NEUTROPHIL-DERIVED EXTRACELLULAR VESICLES 
(NDEVs)
EVs are membrane-derived vesicles that are released by almost all types of cells, including 
immune cells. They are categorized into three major groups based on their size and 
generation mechanism: exosomes, microvesicles, and apoptotic bodies. Neutrophils can 
spontaneously produce EVs, or generate them in response to certain stimuli (15,16,75). The 
production and function of these NDEVs varies depending on the prevailing conditions of 
neutrophils (75). NDEVs are composed of proteins, lipids, amino-acids, glycoconjugates, and 
RNAs (5,15). NDEVs exert antimicrobial activity, stimulate chemotaxis of immune cells such 
as macrophages and CD8+ T cells (16,76), and facilitate intercellular communication through 
their enclosed proteins and RNAs (5) (Fig. 4).
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Figure 4. Intercellular crosstalk by neutrophils through NDEVs. Neutrophils produce EVs either spontaneously or in response to stimuli. The contents in 
NDEVs, such as proteins and RNAs, vary depending on the prevailing condition of neutrophils, resulting in different effects on neighboring immune cells. 
The proinflammatory subtype of NDEVs drives proinflammatory phenotype polarization of macrophages, whereas the anti-inflammatory subtype of NDEVs 
induces the anti-inflammatory phenotype polarization of macrophages. NDEVs also regulate macrophage functions through enclosed miRNAs. NDEVs induce 
the differentiation of Tregs and inhibit Th17 differentiation. They also inhibit the function of Th1 cells through downregulation of IL-2 and IL-2R, and they inhibit 
maturation of moDCs. 
moDC, monocytic dendritic cell.



NDEVs trigger the release of TGF-β from macrophages, thereby promoting their anti-
inflammatory functions (77-79). They activate various signaling pathways, including Mer 
Tyrosine Kinase activation, NF-κB translocation inhibition, Ca2+ signaling induction, 
and TGF-β release induction, thereby regulating macrophage responses at the post-
transcriptional level (77-79). Anti-inflammatory subtypes of NDEV drive macrophages toward 
an anti-inflammatory phenotype, resulting in the inhibition of inflammatory functions 
(16,80). However, NDEVs from Mycobacterium tuberculosis (Mtb)-infected neutrophils induce 
the differentiation of macrophages into proinflammatory phenotype (81,82). Similarly, 
NDEVs generated by activated neutrophils during sepsis can skew the polarization of 
macrophages toward proinflammatory phenotype and prime them for pyroptosis through the 
exosomal miR-30-d-5p-mediated activation of NLRP3 (83). This proinflammatory subtype 
of NDEVs also induces polarization of macrophages into proinflammatory phenotype 
through miRs (16). Macrophages phagocytose NDEVs via Tim-4 and MFG-E8, and these 
macrophages exhibit an increase in IL-10 secretion with reduced numbers during sepsis (84). 
NDEVs also enhance the efferocytosis of apoptotic neutrophils by macrophages and increase 
production of specific lipid mediators (85). They also inhibit the maturation of Mo-DCs, 
impairing the expression of costimulatory molecules, cytokine secretion, and phagocytic 
activity while increasing the release of TGF-β1 (70). EVs generated by PMN-MDSCs inhibit the 
differentiation of naïve T cells into Th1 and Th17, rather promoting differentiation into Tregs 
(86,87). Furthermore, NDEVs suppress the activation and proliferation of T-helper cells by 
down-regulating IL-2 and IL-2 receptor (88). Marcrophages and DCs phagocytose apoptotic 
neutrophils and clear them through efferocytosis, which provides antimicrobial molecules 
and stimulates the production of specialized pro-resolving mediators (85).

Apoptotic bodies from neutrophils elicit an anti-inflammatory response in macrophages 
through the suppression of NF-κB activation (89,90). They also enhance the production 
of immunosuppressive cytokine from LPS-stimulated monocytes (91) and suppress 
the production of anti-inflammatory cytokines in macrophages through expression of 
proteinase 3 (92). In contrast, apoptotic bodies of Mtb-stimulated neutrophils stimulate 
proinflammatory responses from macrophages (93,94). Both macrophages and DCs clear 
apoptotic bodies through efferocytosis (95). The efferocytosis of neutrophil apoptotic 
bodies dampen the production of IL-23 in macrophages (95) and inhibit DC activation 
by suppressing the expression of costimulatory molecule (8,96). Notably, LPS accelerate 
the clearance of neutrophil apoptotic bodies by monocyte-derived macrophages (97). 
Furthermore, apoptotic bodies from neutrophils stimulated with progesterone induce 
differentiation of naïve T cells into Tregs through transfer neutrophil proteins, such as 
forehead box protein, while inhibiting differentiation into Th17 cells (12).

CONCLUSION

Neutrophils, as pivotal components of the innate immune system, interact with a variety 
of immune cells through various mechanisms. They communicate with both innate and 
adaptive immune cells, either directly or indirectly, via soluble mediators, NETs, and EVs. The 
complex and dynamic nature of neutrophil communication highlights their multifaceted role 
within the immune system and provides insights into their contribution to both physiological 
function of the immune system and the pathogenesis of various diseases.
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