과제정보
This research was supported by National Research Foundation of Korea (NRF) grants funded by the Korean government Ministry of Science and ICT (MSIT) (grant No: NRF-2020R1A2C2008312 and RS-2023-00217571). This study was also supported by grant No. 0320200010 from the SNUH Research Fund.
참고문헌
- Wang HX, Pan W, Zheng L, Zhong XP, Tan L, Liang Z, He J, Feng P, Zhao Y, Qiu YR. Thymic epithelial cells contribute to thymopoiesis and T cell development. Front Immunol 2020;10:3099.
- Abramson J, Anderson G. Thymic epithelial cells. Annu Rev Immunol 2017;35:85-118. https://doi.org/10.1146/annurev-immunol-051116-052320
- Shanley DP, Aw D, Manley NR, Palmer DB. An evolutionary perspective on the mechanisms of immunosenescence. Trends Immunol 2009;30:374-381. https://doi.org/10.1016/j.it.2009.05.001
- Liang Z, Dong X, Zhang Z, Zhang Q, Zhao Y. Age-related thymic involution: mechanisms and functional impact. Aging Cell 2022;21:e13671.
- Gui J, Mustachio LM, Su DM, Craig RW. Thymus size and age-related thymic involution: early programming, sexual dimorphism, progenitors and stroma. Aging Dis 2012;3:280-290.
- Palmer S, Albergante L, Blackburn CC, Newman TJ. Thymic involution and rising disease incidence with age. Proc Natl Acad Sci U S A 2018;115:1883-1888. https://doi.org/10.1073/pnas.1714478115
- Palmer DB. The effect of age on thymic function. Front Immunol 2013;4:316.
- Goronzy JJ, Weyand CM. Aging, autoimmunity and arthritis: T-cell senescence and contraction of T-cell repertoire diversity - catalysts of autoimmunity and chronic inflammation. Arthritis Res Ther 2003;5:225-234. https://doi.org/10.1186/ar974
- Dumont-Lagace M, St-Pierre C, Perreault C. Sex hormones have pervasive effects on thymic epithelial cells. Sci Rep 2015;5:12895.
- Swann JB, Happe C, Boehm T. Elevated levels of Wnt signaling disrupt thymus morphogenesis and function. Sci Rep 2017;7:785.
- Hauri-Hohl MM, Zuklys S, Keller MP, Jeker LT, Barthlott T, Moon AM, Roes J, Hollander GA. TGF-beta signaling in thymic epithelial cells regulates thymic involution and postirradiation reconstitution. Blood 2008;112:626-634. https://doi.org/10.1182/blood-2007-10-115618
- Romano R, Palamaro L, Fusco A, Giardino G, Gallo V, Del Vecchio L, Pignata C. Foxn1: a master regulator gene of thymic epithelial development program. Front Immunol 2013;4:187.
- Baran-Gale J, Morgan MD, Maio S, Dhalla F, Calvo-Asensio I, Deadman ME, Handel AE, Maynard A, Chen S, Green F, et al. Ageing compromises mouse thymus function and remodels epithelial cell differentiation. Elife 2020;9:e56221.
- Tong QY, Zhang JC, Guo JL, Li Y, Yao LY, Wang X, Yang YG, Sun LG. Human thymic involution and aging in humanized mice. Front Immunol 2020;11:1399.
- Fujimori S, Ohigashi I, Abe H, Matsushita Y, Katagiri T, Taketo MM, Takahama Y, Takada S. Finetuning of βcatenin in mouse thymic epithelial cells is required for postnatal T-cell development. Elife 2022;11:e69088.
- Dutilh BE, de Boer RJ. Decline in excision circles requires homeostatic renewal or homeostatic death of naive T cells. J Theor Biol 2003;224:351-358. https://doi.org/10.1016/S0022-5193(03)00172-3
- den Braber I, Mugwagwa T, Vrisekoop N, Westera L, Mogling R, de Boer AB, Willems N, Schrijver EH, Spierenburg G, Gaiser K, et al. Maintenance of peripheral naive T cells is sustained by thymus output in mice but not humans. Immunity 2012;36:288-297. https://doi.org/10.1016/j.immuni.2012.02.006
- Bautista JL, Cramer NT, Miller CN, Chavez J, Berrios DI, Byrnes LE, Germino J, Ntranos V, Sneddon JB, Burt TD, et al. Single-cell transcriptional profiling of human thymic stroma uncovers novel cellular heterogeneity in the thymic medulla. Nat Commun 2021;12:1096.
- Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 2013;29:15-21. https://doi.org/10.1093/bioinformatics/bts635
- Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-seq data with or without a reference genome. BMC Bioinformatics 2011;12:323.
- Sun J, Nishiyama T, Shimizu K, Kadota K. TCC: an R package for comparing tag count data with robust normalization strategies. BMC Bioinformatics 2013;14:219.
- Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014;15:550.
- Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010;26:139-140. https://doi.org/10.1093/bioinformatics/btp616
- Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 2005;102:15545-15550. https://doi.org/10.1073/pnas.0506580102
- Szklarczyk D, Kirsch R, Koutrouli M, Nastou K, Mehryary F, Hachilif R, Gable AL, Fang T, Doncheva NT, Pyysalo S, et al. The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res 2023;51:D638-D646. https://doi.org/10.1093/nar/gkac1000
- Qi Y, Zhang R, Lu Y, Zou X, Yang W. Aire and Fezf2, two regulators in medullary thymic epithelial cells, control autoimmune diseases by regulating TSAs: partner or complementer? Front Immunol 2022;13:948259.
- Takaba H, Morishita Y, Tomofuji Y, Danks L, Nitta T, Komatsu N, Kodama T, Takayanagi H. Fezf2 orchestrates a thymic program of self-antigen expression for immune tolerance. Cell 2015;163:975-987. https://doi.org/10.1016/j.cell.2015.10.013
- Shitara S, Hara T, Liang B, Wagatsuma K, Zuklys S, Hollander GA, Nakase H, Chiba T, Tani-ichi S, Ikuta K. IL-7 produced by thymic epithelial cells plays a major role in the development of thymocytes and TCRγδ+ intraepithelial lymphocytes. J Immunol 2013;190:6173-6179. https://doi.org/10.4049/jimmunol.1202573
- Tao H, Li L, Liao NS, Schluns KS, Luckhart S, Sleasman JW, Zhong XP. Thymic epithelial cell-derived IL-15 and IL-15 receptor α chain foster local environment for type 1 innate like T cell development. Front Immunol 2021;12:623280.
- Cowan JE, Malin J, Zhao Y, Seedhom MO, Harly C, Ohigashi I, Kelly M, Takahama Y, Yewdell JW, Cam M, et al. Myc controls a distinct transcriptional program in fetal thymic epithelial cells that determines thymus growth. Nat Commun 2019;10:5498.
- Rodrigues PM, Ribeiro AR, Perrod C, Landry JJ, Araujo L, Pereira-Castro I, Benes V, Moreira A, Xavier-Ferreira H, Meireles C, et al. Thymic epithelial cells require p53 to support their long-term function in thymopoiesis in mice. Blood 2017;130:478-488. https://doi.org/10.1182/blood-2016-12-758961
- Shen H, Ji Y, Xiong Y, Kim H, Zhong X, Jin MG, Shah YM, Omary MB, Liu Y, Qi L, et al. Medullary thymic epithelial NF-kB-inducing kinase (NIK)/IKKα pathway shapes autoimmunity and liver and lung homeostasis in mice. Proc Natl Acad Sci U S A 2019;116:19090-19097. https://doi.org/10.1073/pnas.1901056116
- Park JE, Botting RA, Dominguez Conde C, Popescu DM, Lavaert M, Kunz DJ, Goh I, Stephenson E, Ragazzini R, Tuck E, et al. A cell atlas of human thymic development defines T cell repertoire formation. Science 2020;367:eaay3224.
- Liu Y, El-Naggar S, Darling DS, Higashi Y, Dean DC. Zeb1 links epithelial-mesenchymal transition and cellular senescence. Development 2008;135:579-588. https://doi.org/10.1242/dev.007047
- Zhu QQ, Ma C, Wang Q, Song Y, Lv T. The role of TWIST1 in epithelial-mesenchymal transition and cancers. Tumour Biol 2016;37:185-197. https://doi.org/10.1007/s13277-015-4450-7
- Reichmann E, Schwarz H, Deiner EM, Leitner I, Eilers M, Berger J, Busslinger M, Beug H. Activation of an inducible c-FosER fusion protein causes loss of epithelial polarity and triggers epithelial-fibroblastoid cell conversion. Cell 1992;71:1103-1116. https://doi.org/10.1016/S0092-8674(05)80060-1
- Satoh R, Kakugawa K, Yasuda T, Yoshida H, Sibilia M, Katsura Y, Levi B, Abramson J, Koseki Y, Koseki H, et al. Requirement of stat3 signaling in the postnatal development of thymic medullary epithelial cells. PLoS Genet 2016;12:e1005776.
- Barthlott T, Handel AE, Teh HY, Wirasinha RC, Hafen K, Zuklys S, Roch B, Orkin SH, de Villartay JP, Daley SR, et al. Indispensable epigenetic control of thymic epithelial cell development and function by polycomb repressive complex 2. Nat Commun 2021;12:3933.
- Kadouri N, Givony T, Nevo S, Hey J, Ben Dor S, Damari G, Dassa B, Dobes J, Weichenhan D, Bahr M, et al. Transcriptional regulation of the thymus master regulator Foxn1. Sci Immunol 2022;7:eabn8144.
- Hu C, Zhang K, Jiang F, Wang H, Shao Q. Epigenetic modifications in thymic epithelial cells: an evolutionary perspective for thymus atrophy. Clin Epigenetics 2021;13:210.
- Castelo-Branco C, Soveral I. The immune system and aging: a review. Gynecol Endocrinol 2014;30:16-22. https://doi.org/10.3109/09513590.2013.852531
- Thomas R, Wang W, Su DM. Contributions of age-related thymic involution to immunosenescence and inflammaging. Immun Ageing 2020;17:2.
- Elyahu Y, Monsonego A. Thymus involution sets the clock of the aging T-cell landscape: implications for declined immunity and tissue repair. Ageing Res Rev 2021;65:101231.
- Boehm T, Swann JB. Thymus involution and regeneration: two sides of the same coin? Nat Rev Immunol 2013;13:831-838. https://doi.org/10.1038/nri3534
- Semwal MK, Jones NE, Griffith AV. Metabolic regulation of thymic epithelial cell function. Front Immunol 2021;12:636072.
- Griffith AV, Venables T, Shi J, Farr A, van Remmen H, Szweda L, Fallahi M, Rabinovitch P, Petrie HT. Metabolic damage and premature thymus aging caused by stromal catalase deficiency. Cell Reports 2015;12:1071-1079. https://doi.org/10.1016/j.celrep.2015.07.008
- Balciunaite G, Keller MP, Balciunaite E, Piali L, Zuklys S, Mathieu YD, Gill J, Boyd R, Sussman DJ, Hollander GA. Wnt glycoproteins regulate the expression of FoxN1, the gene defective in nude mice. Nat Immunol 2002;3:1102-1108. https://doi.org/10.1038/ni850
- Bleul CC, Boehm T. BMP signaling is required for normal thymus development. J Immunol 2005;175:5213-5221. https://doi.org/10.4049/jimmunol.175.8.5213
- Frey P, Devisme A, Schrempp M, Andrieux G, Boerries M, Hecht A. Canonical bmp signaling executes epithelial-mesenchymal transition downstream of snail1. Cancers (Basel) 2020;12:1019.
- Gordon J, Patel SR, Mishina Y, Manley NR. Evidence for an early role for BMP4 signaling in thymus and parathyroid morphogenesis. Dev Biol 2010;339:141-154. https://doi.org/10.1016/j.ydbio.2009.12.026
- Swann JB, Krauth B, Happe C, Boehm T. Cooperative interaction of BMP signalling and Foxn1 gene dosage determines the size of the functionally active thymic epithelial compartment. Sci Rep 2017;7:8492.
- Wertheimer T, Velardi E, Tsai J, Cooper K, Xiao S, Kloss CC, Ottmuller KJ, Mokhtari Z, Brede C, deRoos P, et al. Production of BMP4 by endothelial cells is crucial for endogenous thymic regeneration. Sci Immunol 2018;3:eaal2736.
- Yu FX, Zhao B, Guan KL. Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell 2015;163:811-828. https://doi.org/10.1016/j.cell.2015.10.044
- Ucar O, Li K, Dvornikov D, Kreutz C, Timmer J, Matt S, Brenner L, Smedley C, Travis MA, Hofmann TG, et al. A thymic epithelial stem cell pool persists throughout ontogeny and is modulated by TGF-β. Cell Reports 2016;17:448-457. https://doi.org/10.1016/j.celrep.2016.09.027