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ABSTRACT

CD8+ T cells are activated by TCRs that recognize specific cognate Ags, while NK-cell 
activation is regulated by a balance between signals from germline-encoded activating and 
inhibitory NK receptors. Through these different processes of Ag recognition, CD8+ T cells 
and NK cells play distinct roles as adaptive and innate immune cells, respectively. However, 
some human CD8+ T cells have been found to express activating or inhibitory NK receptors. 
CD8+ T-cell populations expressing NK receptors straddle the innate-adaptive boundary with 
their innate-like features. Recent breakthrough technical advances in multi-omics analysis 
have enabled elucidation of the unique immunologic characteristics of these populations. 
However, studies have not yet fully clarified the heterogeneity and immunological 
characteristics of each CD8+ T-cell population expressing NK receptors. Here we aimed to 
review the current knowledge of various CD8+ T-cell populations expressing NK receptors, 
and to pave the way for delineating the landscape and identifying the various roles of these 
T-cell populations.
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INTRODUCTION

Although both human NK and CD8+ T cells are representative cytotoxic lymphocytes, they 
have distinct characteristics as innate and adaptive immune cells, respectively. NK-cell 
activation is regulated by a balance between signals from germline-encoded activating and 
inhibitory NK receptors. Activating NK receptors—such as NKG2D, NKp44, NKp30, and 
NKG2C—recognize ligands that are mainly expressed on aberrant cells, e.g., virus-infected, 
transformed, or stressed cells. On the other hand, inhibitory NK receptors—such as killer 
cell immunoglobulin-like receptors (KIRs) and NKG2A—recognize MHC ligands that are 
expressed on normal healthy cells (1,2). As adaptive immune cells, CD8+ T cells are activated 
by TCRs that recognizes specific epitopes presented by MHC class I (MHC-I) molecules 
and exert effector functions (3). The CD8+ T-cell population exhibits a highly diverse TCR 
repertoire, enabling CD8+ T cells to respond against many different Ags.
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Some subsets of T cells such as mucosal-associated invariant T cells, invariant natural killer T 
cells and γδ T cells express TCRs with limited diversity and exert innate-like functions. Apart 
from those subsets, CD8+ T cells can express activating or inhibitory NK receptors, including 
KIRs, NKG2A, and NKG2C. However, studies have not yet comprehensively elucidated the 
immunological characteristics of CD8+ T-cell subpopulations expressing each NK receptor.

In this review, we provide an overview of CD8+ T-cell subpopulations expressing NK 
receptors. First, we describe CD8+ T cells expressing CD56, with regard to their innateness 
and NK receptor expression. Next, we provide a structured review of CD8+ T-cell 
subpopulations expressing KIR, NKG2A, or NKG2C. Finally, we discuss the physiological 
and pathological roles of CD8+ T-cell subpopulations expressing NK receptors. We do not 
describe NKG2D because NKG2D is expressed by all types of human CD8+ T cells, not by a 
CD8+ T-cell subpopulation.

CD8+ T CELLS EXPRESSING CD56

CD56—also known as neural cell adhesion molecule (NCAM)—is the first characterized 
immunoglobulin superfamily member engaged in cell adhesion (4). CD56 serves as a 
classical lineage marker for human NK cells, which are defined as CD3−CD56+ lymphocytes 
(5). Additionally, the CD56 expression level is used to define functionally distinct subsets of 
NK cells—with a CD56bright NK-cell subset showing elevated cytokine production (6,7), and a 
CD56dim NK-cell subset exhibiting enhanced cytotoxicity and a mature differentiation status (8).

In this background, early investigators used the term “natural T cells” to describe CD56-
expressing T cells (9-11). This CD56+ natural T-cell population comprises heterogeneous T-cell 
subsets, including γδ T cells and CD4+ T cells, but mainly CD8+ T cells with conventional 
TCRs (11,12). CD56+ T cells are distinguished from CD56− T cells and invariant T cells, in 
terms of TCR clonality, surface protein phenotypes, and genome-wide transcriptional 
patterns. Compared with CD56− T cells, CD56+ T cells exhibit higher expressions of NK-cell-
related molecules (e.g., CD16, CD94/NKG2, NKG2D, CD122, and DNAM-1) and granzyme 
B (12). With regards to TCR diversity, CD56+ T cells exhibit a considerably restricted TCRVβ 
spectrum compared to CD56− T cells, but a more diverse spectrum than invariant T cells. 
CD56+ T cells expand in response to IL-2 synergized with IL-12 (13). They also exhibit a 
potent capacity for T helper 1 cytokine production, and exert TCR-independent cytotoxicity 
following stimulation with mitogen and IL-2 (10). Based on these innate-like features, it 
has been suggested that CD56+ T cells may contribute to rapid immune responses against 
viruses, like innate immune cells. CD56+ T cells have been reported to inhibit hepatitis C virus 
replication in hepatocytes (14). The frequency of CD56+ T cells in peripheral blood is higher 
among patients with cytomegalovirus (CMV) infection compared to healthy donors (15).

Our research group recently identified a distinct CD8+ T-cell subpopulation showing 
high CD56 expression without CD161 expression (CD56hiCD161−CD8+ T cells), which is 
characterized by high expression of NK-related molecules and a uniquely restricted TCR 
repertoire (Fig. 1). The frequency of these cells within the liver sinusoidal CD8+ T-cell 
population is significantly increased among patients with hepatitis B virus (HBV)-related 
chronic liver disease (16). CD56hiCD161−CD8+ T cells mainly exhibit a CCR7−CD45RA− 
effector memory phenotype, and include a higher frequency of CD69+ cells, which are tissue 
resident memory T (TRM) or TRM-like cells, compared to other effector memory CD8+ T cells. 
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CD56hiCD161−CD8+ T cells exhibit weak responsiveness to TCR stimulation, but they show 
high expression of various NK receptors (e.g., CD94, KIRs, and NKG2C) and exert NKG2C- 
or NKG2D-mediated effector functions even in the absence of TCR stimulation. Additionally, 
CD56hiCD161−CD8+ T cells are highly responsive to innate cytokines (e.g., IL-12/18 and IL-15) 
in the absence of TCR stimulation. The CD56hiCD161−CD8+ T-cell population resembles 
previously described CD161−CD56+ regulatory CD8+ T cells (17). Further studies are needed to 
elucidate the roles of CD56hiCD161−CD8+ T cells in immune responses to microbial pathogens 
or immunopathology.

CD8+ T CELLS EXPRESSING KIRs

Virus-infected or transformed host cells tend to lose their MHC-I expression (termed 
“missing-self ”). These aberrant cells with MHC-I downregulation are targeted by NK cells. 
When target cells express sufficient levels of MHC-I, inhibitory KIRs (receptors for MHC-I) 
deliver inhibitory signals to NK cells, which does not occur when target cells lose MHC-I 
expression (18). KIRs are polygenic and polymorphic Ig superfamily receptors, which can 
recognize distinct MHC-I molecules that are also polygenic and polymorphic. Inhibitory 
KIRs contain immunoreceptor tyrosine-based inhibitory motifs (ITIMs) in their cytoplasmic 
domains, which suppress signaling delivered by activating receptors (19,20).

KIRs can be expressed on TCRαβ+CD8+ T cells as well as NK cells (21), and can exert a 
suppressive function in both cell types. Engagement of KIRs with MHC-I ligands reduces 
the TCR-mediated phosphorylation of ZAP-70 and LAT and downstream signaling pathways 
(22). This decreases the TCR-triggered effector functions of CD8+ T cells, in terms of cytokine 
secretion (23,24) and cytotoxicity (24-26). On the other hand, KIRs might contribute to CD8+ 
T-cell survival by suppressing activation-induced cell death (27,28). Furthermore, several 
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Figure 1. Innate-like features of the CD56hiCD161−CD8+ T-cell population. Our group recently reported a CD8+ T-cell population marked with high CD56 expression 
without CD161 expression (CD56hiCD161−CD8+ T cells). These CD56hiCD161−CD8+ T cells are distinguished from other CD8+ T cells in terms of their innate-like 
features. This CD8+ subpopulation exhibits high expressions of various NK receptors, and exerts NK-receptor mediated effector functions in a TCR-independent 
manner. Additionally, these CD56hiCD161−CD8+ T cells show increased responsiveness to stimulation with innate cytokines, including IL-12/18 and IL-15.



studies suggest that KIR+CD8+ T cells show intrinsic functional impairment, at least against 
TCR stimulation. Impairment of proliferation and cytokine secretion have been reported 
even in the absence of KIR engagement (29-31).

KIR+CD8+ T cells exhibit the surface phenotypes of CCR7−CD45RA+ effector memory T 
(TEMRA) cells, known as terminally differentiated T cells (32,33), and CD28−CD57+ replicative-
senescent T cells (30,34). They also express high levels of cytotoxic molecules, such as 
perforin (29) and granzyme B (35). KIR+CD8+ T cells exhibit an increasing frequency with age 
(31,36) and have a restricted TCR repertoire (26,30,37).

Infection with CMV, one of the most prevalent latent viruses in human beings, is associated 
with expansion of the KIR+CD8+ T-cell population. Chan et al. (12) demonstrated that 
CMV-seropositive individuals have higher frequencies of KIR+CD56+ T cells compared to 
CMV-seronegative individuals. Moreover, CMV reactivation is associated with expansion of 
the KIR+CD56+ T-cell population in bone marrow transplant recipients. It was hypothesized 
that the KIR+ T cells in CMV-seropositive individuals are specific to CMV Ags. However, 
Björkström et al. (30) demonstrated that KIR expression is much lower (or virtually absent) 
on CMV pp65-specific CD45RA+CD57+CD8+ T cells compared to on the non-specific 
population. On the other hand, a recent report described KIR expression on the vast majority 
of HLA-E-restricted CMV UL40-specific CD8+ T cells (38).

Besides in CMV infection, the KIR+CD8+ T-cell population expands in patients with HIV 
infection (39) and psoriasis (40). Additionally, the MHC allele-dependent expansion of 
KIR+CD8+ T-cell populations has been reported in cancer patients (41,42). It remains 
unknown whether Ag recognition by TCR is required for expansion of the KIR+CD8+ T-cell 
population in patients with inflammation or infection.

Recent studies have reported that KIR+CD8+ T cells function in regulating immune responses 
(Fig. 2). In 2021, Pieren et al. (31) reported that KIR+CD45RA+CD8+ T cells are regulatory CD8+ 
T cells, as was previously described in mice (43). Similar to CD4+ Tregs, KIR+CD45RA+CD8+ 
T cells exhibit high expressions of Helios and TIGIT. These cells also show upregulation of 
CD122, which is associated with CD8+ Tregs in mice. Pieren et al. (31) also demonstrated 
that KIR+CD45RA+CD8+ T cells can dose-dependently regulate the proliferation of KIR−

NKG2A− conventional CD8+ T cells. More recently, Li et al. (37) also reported that KIR+CD8+ 
cells act as CD8+ Tregs. They found increased frequencies of KIR+CD8+ T cells in patients 
with autoimmune diseases and infections, such as celiac disease and coronavirus disease 
2019 (COVID-19). When gliadin-specific CD4+ T cells from patients with celiac disease were 
stimulated with Ag, KIR+CD8+ T cells suppressed pathogenic CD4+ T-cell responses by killing 
pathogenic cells, without harming non-pathogenic CD4+ T cells. RNA sequencing of KIR+CD8+ 
T cells further revealed that human KIR+CD8+ T cells are the analogous population of mouse 
Ly49+CD8+ T cells (CD8+ Tregs). Further studies are required to elucidate how the KIR+CD8+ 
T-cell population size is regulated, and how these cells recognize pathogenic T cells.

CD8+ T CELLS EXPRESSING NKG2A

A member of the lectin family, NKG2A is an ITIM-bearing inhibitory receptor (44). NKG2A 
forms a heterodimer with CD94, and binds to HLA-E, which is expressed on most human 
tissues and complexed with peptides derived from the leader sequence of classical MHC-I 
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(45-47). NKG2A is typically expressed on NK cells, but can also be expressed on CD8+ T cells 
(48-50). TCR stimulation induces NKG2A expression on CD8+ T cells in a manner synergized 
with cytokines, such as IL-12, IL-15, and TGF (51-55). NKG2A engagement suppresses effector 
functions of CD8+ T cells (49), as also observed in NK cells, and blockade of NKG2A or CD94 
increases the cytotoxic activity of NKG2A-expressing CD8+ T cells (53).

NKG2A has recently attracted attention as an immune checkpoint, similar to the well-known 
checkpoint receptors PD-1, TIGIT, and TIM-3 (56,57). An anti-NKG2A monoclonal Ab, called 
monalizumab, has been developed (58,59). Clinical trials investigating concomitant use of 
anti-PD-1/PD-L1 treatment and monalizumab have shown better clinical results in diverse 
cancers, including bladder cancer, non-small-cell lung cancer, and colorectal cancer (56,60,61). 
Chronic antigenic stimulation and persistent exposure to various cytokines in the tumor 
microenvironment reportedly induce NKG2A expression on tumor-infiltrating CD8+ T cells 
(51). Monalizumab reinvigorates the cytotoxic function of NKG2A+CD8+ T cells by blocking the 
interaction of NKG2A with HLA-E expressed on cancer cells. It has also been found that severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) specific CD8+ T cells from patients 
with severe COVID-19 express high NKG2A levels, and exert reduced effector functions (62).

NKG2A and/or KIRs have been proposed as unique markers of human virtual memory T 
(TVM) cells, which are T cells featuring memory phenotypes even in neonatal cord blood (63). 
Human TVM cells express high levels of eomesodermin, CD62L, and CD122; exhibit a CCR7−

CD45RA+ TEMRA phenotype; and show increased responsiveness to innate cytokines, such as 
IL-12, IL-15, and IL-18 (63,64). However, a recent study demonstrated that CD45RA+CD8+ T 
cells expressing NKG2A versus KIR are distinct subsets (31). Compared to KIR+CD45RA+CD8+ 
T cells, NKG2A+CD45RA+CD8+ T cells exhibit downregulated transcripts related to 
senescence, exhaustion, and regulatory functions. Moreover, the relative proportion of 
NKG2A+CD45RA+CD8+ T cells declines with age.
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Figure 2. KIR+CD8+ T cells as a regulator of immune responses. KIR+CD8+ T cells have been reported to be human CD8+ TREG cells, which can regulate or kill 
pathogenic T cells. Similar to CD8+ TREG cells of mice, human KIR+CD8+ T cells exhibit high expressions of the transcription factor Helios and IL-15 receptor β chain 
(CD122). They contain high amounts of cytotoxic molecules (perforin and granzyme B), and show restricted TCR usage. The mechanisms of how KIR+CD8+ T cells 
originate, and how they recognize pathogenic T cells, remain unknown.



CD8+ T CELLS EXPRESSING NKG2C

NKG2C also forms a heterodimer with CD94. The NKG2C/CD94 heterodimer binds to HLA-E, 
similar to NKG2A but with lower affinity, and transduces signals through the immunoreceptor 
tyrosine activation motif (ITAM)-bearing adaptor molecule DAP12 (65,66). Like NKG2A, 
NKG2C is mainly expressed on NK cells, but can also be expressed on some subsets of CD8+ 
T cells (50,67). NKG2C+CD8+ T-cell populations have been reported to expand under several 
pathologic conditions, including CMV infection, Stevens-Johnson syndrome, toxic epidermal 
necrolysis, and celiac disease (68-70). Two studies have described NKG2C-mediated CD8+ T-cell 
activation. Co-stimulation with anti-CD94 and anti-CD3 Abs strengthens the lytic function of 
NKG2C-expressing CD8+ T cells (50). Even in the absence of TCR stimulation, NKG2C ligation 
itself can activate T cells to proliferate and kill HLA-E-transfected target cells that do not 
express the other MHC-I molecules (71). This finding reveals that NKG2C signaling could be a 
potential alternative to TCR-mediated activation of CD8+ T cells.

Recent studies have also examined and characterized NKG2C-expressing CD8+ T cells (Fig. 3).  
One study identified NKG2C as an important marker for potent antimicrobial T cells against 
Mycobacterium leprae (72). Compared with other CD8+ subsets, CD8+ T cells that express 
granulysin, perforin, and granzyme B exert superior effector functions against M. leprae-
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Figure 3. Characteristics of CD8+ T cells expressing NKG2C. Balin et al. (72) reported that NKG2C is an important marker for CD8+ T cells expressing granulysin, 
perforin, and granzyme B (tri-cytotoxic CD8+ T cells), and having greater antimicrobial activity against Mycobacterium leprae. NKG2C ligation activates tri-
cytotoxic CD8+ T cells to release cytotoxic proteins. Sottile et al. (67) described downregulation of BCL11B in NKG2C+CD8+ T cells. The loss of BCL11B triggers 
NK-cell-like reprogramming and induces the generation of NKG2C+CD8+ T cells. Sullivan et al. (38) reported that HLA-E-restricted CD8+ T cells with a TRBV14 
repertoire have a low affinity for HLA-E/UL 40 complexes, and express high levels of NKG2C. NKG2C ligation increases the production of IFN-γ and TNF-α from 
these CD8+ T cells, indicating that NKG2C can compensate for a weak TCR signal.



infected macrophages, and these cells typically express NKG2C. Functionally, anti-CD94 Ab 
enhances the release of cytotoxic molecules from anti-CD3-stimulated NKG2C+CD8+ T cells.

HLA-E serves as a ligand of both CD94/NKG2C and CD94/NKG2A, complexed with peptides 
derived from the leader sequence of classical MHC-I (73). In CMV infection, CMV-encoded 
UL40, which mimics the leader sequence of classical MHC-I, enables CMV-infected cells to 
evade NK cell-mediated immune responses by engaging NKG2A (74). On the other hand, 
NKG2C on NK cells can recognize the HLA-E/UL40 complex, and NKG2C+ NK cells exert 
cytotoxic functions against CMV-infected cells (75). Furthermore, these NKG2C+ NK cells 
undergo clonal-like expansion against UL40, similar to the memory response of CD8+ T cells. 
The NKG2C+CD8+ T-cell population also expands in CMV-infected patients (76). Sottile et 
al. revealed a mechanism for CD8+ T-cell expansion and reprogramming in CMV-infected 
patients (67). Bulk RNA-sequencing analysis of the NKG2C+CD8+ T-cell population revealed 
downregulation of BCL11B. The loss of BCL11B triggers NK-cell-like reprogramming of T 
cells, and induces the generation of NKG2C+CD8+ T cells under HLA-E ligand stimulation. 
Additionally, TCR analysis reveals that most NKG2C+CD8+ T cells in CMV-seropositive 
individuals exhibit narrow TCR Vβ-chain usage, mainly TRBV-14, while NKG2C+CD8+ T cells 
in CMV-seronegative individuals are more polyclonal. This restricted TCR diversity in CMV-
seropositive donors indicates that NKG2C+CD8+ T cells undergo clonal expansion.

HLA-E is recognized not only by NKG2A and NKG2C, but also by TCRs of CD8+ T cells that 
are restricted by HLA-E. HLA-E-restricted CD8+ T cells have been investigated in several 
diseases, including CMV, HIV, Epstein-Barr virus, Mycobacterium tuberculosis, and Salmonella 
typhi infection (74,77,78). Interestingly, HLA-E-restricted CD8+ T cells reportedly exert 
regulatory properties in tuberculosis infection by inhibiting the proliferation of CD4+ T 
cells, and patients with autoimmune type I diabetes exhibit a decreased frequency of HLA-
E-restricted CD8+ T cells (79,80). Sullivan et al. (38) examined whether NKG2C played a role 
in the activation of HLA-E-restricted CD8+ T cells in CMV infection, and demonstrated that 
NKG2C on HLA-E-restricted CD8+ T cells could co-stimulate CD8+ T cells by compensating 
for the relatively weak signal intensity of TCRs.

CONCLUSION

In the late 1990s, researchers reported CD56+ T cells (termed “natural T cells”) and 
demonstrated that this T-cell subpopulation exhibits distinct immunologic features, in terms 
of the expressions of many NK receptors and innate-like features, compared to their CD56− 
T-cell counterparts. Since those initial descriptions, there have been sporadic reports of CD8+ 
T-cell populations expressing various NK receptors (Table 1). Some act as co-stimulatory or 
inhibitory molecules, while others stimulate CD8+ T cells to exert effector functions in a TCR-
independent manner. Recent breakthrough technical developments in multi-omics analysis 
have enabled us to explore the heterogenous subpopulations of CD8+ T cells expressing NK 
receptors, and to reveal the unique immunologic characteristics of these populations (16,37). 
The CD8+ T-cell populations expressing NK receptors execute unique functional roles—for 
example, regulatory roles—distinct from the conventional CD8+ T-cell population. However, 
studies have not yet fully clarified the heterogeneity of CD8+ T-cell populations expressing 
NK receptors. Further studies are needed to delineate the heterogeneity of CD8+ T-cell 
populations expressing NK receptors, and to elucidate their molecular characteristics and 
roles in physiologic and pathologic conditions.
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Table 1. Featured characteristics of human CD8+ T cells expressing NK-associated surface proteins
Immunophenotype Immunologic features Clinical significance Ref.

CD56+CD8+ TEM (CCR7−CD45RA−) and 
TRM-like (CD69+) in liver 
sinusoid (16)

• �High expression of various NK-related molecules, e.g., CD16, CD94/
NKG2, NKG2D, CD122, and DNAM-1 (11,12)

• Expands with IL-2 stimulation synergized with IL-12 stimulation (13)
• Potent capacity for Th1 cytokine production (10)
• �TCR-independent cytotoxicity upon stimulation with mitogen and 

IL-2 (13)
• Restricted TCR diversity (16)

• �Exert anti-viral effects, such 
as in chronic hepatitis C 
infection (9)

• �Expanded in CMV and chronic 
hepatitis B infection (15,16)

(9-16)

KIR+CD8+ TEMRA (CCR7−CD45RA+) • KIR-dependent inhibition of TCR signaling (22)
• Intrinsic functional impairment against TCR stimulation (29-31)
• �High expression of cytotoxic molecules, e.g., perforin and granzyme 

B (29,35)
• Exert regulatory functions against pathogenic CD4+ T cells (37)
• Restricted TCR diversity (26,30,37)

• �Increased frequency with 
aging (31,36)

• �Expanded in CMV and HIV 
infection and psoriasis 
(12,39,40)

(12,22,26,29-
31,35-37,40)Replicative-senescent T 

cells (CD28−CD57+) (30)

NKG2A+CD8+ Similar to effector 
memory T cells 
(CD45RA−CD45RO+CD28+ 
CD27+CCR7−CD57− IL7R+) 
(67)

• NKG2A-dependent negative regulation of effector function (49)
• Expanded with TCR stimulation synergized with cytokines (51,52)

• �NKG2A is targeted by 
immune check point inhibitor 
(monalizumab) (51,58,59)

• �Expanded in severe COVID-19 
infection (62)

(49,51,52,58, 
59,62,67)

NKG2C+CD8+ Similar to TEMRA cells 
(CD45RA+ CD45RO−CD28−

CD27−CCR7−CD57+IL7Rlow/−) 
(67)

• Exert TCR-independent effector function (71)
• �High expression of cytotoxic molecules, e.g., granulysin, perforin, 

and granzyme B (72)
• �NKG2C on HLA-E restricted CD8+ T cells compensates for the 

relatively weak TCR signal intensity (38)
• Restricted TCR diversity in CMV-seropositive donors (67)

• �Expanded in several diseases, 
e.g., CMV, leprosy, Stevens-
Johnson syndrome, toxic 
epidermal necrolysis, and 
celiac disease (67-70,72)

(38,67-72)
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