DOI QR코드

DOI QR Code

Exploring the Microbial Community and Functional Characteristics of the Livestock Feces Using the Whole Metagenome Shotgun Sequencing

  • Hyeri Kim (Department of Animal Resources Science, Dankook University) ;
  • Eun Sol Kim (Department of Animal Resources Science, Dankook University) ;
  • Jin Ho Cho (Department of Animal Science, Chungbuk National University) ;
  • Minho Song (Division of Animal and Dairy Science, Chungnam National University) ;
  • Jae Hyoung Cho (Department of Animal Resources Science, Dankook University) ;
  • Sheena Kim (Department of Animal Resources Science, Dankook University) ;
  • Gi Beom Keum (Department of Animal Resources Science, Dankook University) ;
  • Jinok Kwak (Department of Animal Resources Science, Dankook University) ;
  • Hyunok Doo (Department of Animal Resources Science, Dankook University) ;
  • Sriniwas Pandey (Department of Animal Resources Science, Dankook University) ;
  • Seung-Hwan Park (Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Ju Huck Lee (Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Hyunjung Jung (Animal Nutrition & Physiology Division, National Institute of Animal Science, RDA) ;
  • Tai Young Hur (Animal Diseases & Health Division, National Institute of Animal Science, RDA) ;
  • Jae-Kyung Kim (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Kwang Kyo Oh (Microbial Safety Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Hyeun Bum Kim (Department of Animal Resources Science, Dankook University) ;
  • Ju-Hoon Lee (Department of Food Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Seoul National University)
  • Received : 2022.09.07
  • Accepted : 2022.12.06
  • Published : 2023.01.28

Abstract

The foodborne illness is the important public health concerns, and the livestock feces are known to be one of the major reservoirs of foodborne pathogens. Also, it was reported that 45.5% of foodborne illness outbreaks have been associated with the animal products contaminated with the livestock feces. In addition, it has been known that the persistence of a pathogens depends on many potential virulent factors including the various virulent genes. Therefore, the first step to understanding the public health risk of livestock feces is to identify and describe microbial communities and potential virulent genes that contribute to bacterial pathogenicity. We used the whole metagenome shotgun sequencing to evaluate the prevalence of foodborne pathogens and to characterize the virulence associated genes in pig and chicken feces. Our data showed that the relative abundance of potential foodborne pathogens, such as Bacillus cereus was higher in chickens than pigs at the species level while the relative abundance of foodborne pathogens including Campylobacter coli was only detected in pigs. Also, the microbial functional characteristics of livestock feces revealed that the gene families related to "Biofilm formation and quorum sensing" were highly enriched in pigs than chicken. Moreover, the variety of gene families associated with "Resistance to antibiotics and toxic compounds" were detected in both animals. These results will help us to prepare the scientific action plans to improve awareness and understanding of the public health risks of livestock feces.

Keywords

Acknowledgement

This work was carried out with the support of "Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ0162982022)" Rural Development Administration, Republic of Korea and the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education(2019M3A9F3065227).

References

  1. Oliver SP, Jayarao BM, Almeida RA. 2005. Foodborne pathogens in milk and the dairy farm environment: food safety and public health implications. Foodbourne Pathog. Dis. 2: 115-129.  https://doi.org/10.1089/fpd.2005.2.115
  2. Kreling V, Falcone FH, Kehrenberg C, Hensel A. 2020. Campylobacter sp.: pathogenicity factors and prevention methods-new molecular targets for innovative antivirulence drugs? Appl. Microbiol. Biotechnol. 104: 10409-10436.  https://doi.org/10.1007/s00253-020-10974-5
  3. Weidenmaier C, Kokai-Kun JF, Kristian SA, Chanturiya T, Kalbacher H, Gross M, et al. 2004. Role of teichoic acids in Staphylococcus aureus nasal colonization, a major risk factor in nosocomial infections. Nat. Med. 10: 243-245.  https://doi.org/10.1038/nm991
  4. Wertheim HFL, Walsh E, Choudhurry R, Melles DC, Boelens HAM, Miajlovic H, et al. 2008. Key role for clumping factor B in Staphylococcus aureus nasal colonization of humans. PLoS Med. 5: e17. 
  5. McDermott P, Zhao S, Wagner D, Simjee S, Walker R, White D. 2002. The food safety perspective of antibiotic resistance. Anim. Bbiotechnol. 13: 71-84.  https://doi.org/10.1081/ABIO-120005771
  6. Gomez-Alvarez V, Teal TK, Schmidt TM. 2009. Systematic artifacts in metagenomes from complex microbial communities. ISME J. 3: 1314-1317.  https://doi.org/10.1038/ismej.2009.72
  7. Cox MP, Peterson DA, Biggs PJ. 2010. SolexaQA: At-a-glance quality assessment of Illumina second-generation sequencing data. BMC Bioinformatics 11: 1-6.  https://doi.org/10.1186/1471-2105-11-1
  8. Douterelo I, Calero-Preciado C, Soria-Carrasco V, Boxall JB. 2018. Whole metagenome sequencing of chlorinated drinking water distribution systems. Environ. Sci. Water Res. Technol. 4: 2080-2091.  https://doi.org/10.1039/C8EW00395E
  9. Hacker J, Kaper JB. 2000. Pathogenicity islands and the evolution of microbes. AIMS Microbiol. 54: 641-679.  https://doi.org/10.1146/annurev.micro.54.1.641
  10. Bintsis T. 2017. Foodborne pathogens. AIMS Mcrobiol. 3: 529. 
  11. Hazards EPoB. 2010. Scientific opinion on quantification of the risk posed by broiler meat to human campylobacteriosis in the EU. EFSA J. 8: 1437. 
  12. Doyle MP, Erickson MC. 2006. Reducing the carriage of foodborne pathogens in livestock and poultry. Poultry Sci. 85: 960-973.  https://doi.org/10.1093/ps/85.6.960
  13. Heredia N, Garcia S. 2018. Animals as sources of food-borne pathogens: a review. Anim. Nutr. 4: 250-255.  https://doi.org/10.1016/j.aninu.2018.04.006
  14. Gerlach RG, Hensel MJIJoMM. 2007. Protein secretion systems and adhesins: the molecular armory of Gram-negative pathogens. Int. J. Med. Microbiol. 297: 401-415.  https://doi.org/10.1016/j.ijmm.2007.03.017
  15. Green ER, Mecsas J. 2016. Bacterial secretion systems: an overview. Microbiol. Spectr. 4: 4.1. 13. 
  16. Kanonenberg K, Schwarz CK, Schmitt LJRim. 2013. Type I secretion systems-a story of appendices. Res. Microbiol. 164: 596-604.  https://doi.org/10.1016/j.resmic.2013.03.011
  17. Piddock LJJNRM. 2006. Multidrug-resistance efflux pumps? not just for resistance. Nat. Rev. Microbiol. 4: 629-636.  https://doi.org/10.1038/nrmicro1464
  18. Cianciotto NPJTim. 2005. Type II secretion: a protein secretion system for all seasons. Trends Microbiol. 13: 581-588.  https://doi.org/10.1016/j.tim.2005.09.005
  19. Filloux AJBeBA-MCR. 2004. The underlying mechanisms of type II protein secretion. Biochimica et Biophysica Acta (BBA)-Mol. Cell Res. 1694: 163-179.  https://doi.org/10.1016/j.bbamcr.2004.05.003
  20. Cascales EJEr. 2008. The type VI secretion toolkit. EMBO Rep. 9: 735-741.  https://doi.org/10.1038/embor.2008.131
  21. Filloux A, Hachani A, Bleves SJM. 2008. The bacterial type VI secretion machine: yet another player for protein transport across membranes. Microbiology 154: 1570-1583.  https://doi.org/10.1099/mic.0.2008/016840-0
  22. Shrivastava S, Mande SSJPo. 2008. Identification and functional characterization of gene components of Type VI secretion system in bacterial genomes. PLoS One 3: e2955. 
  23. Korotkov KV, Sandkvist M, Hol WG. 2012. The type II secretion system: biogenesis, molecular architecture and mechanism. Nat. Rev. Microbiol. 10: 336-351.  https://doi.org/10.1038/nrmicro2762
  24. Galan JE, Wolf-Watz HJN. 2006. Protein delivery into eukaryotic cells by type III secretion machines. Nature 444: 567-573.  https://doi.org/10.1038/nature05272
  25. Cornelis GRJNRM. 2006. The type III secretion injectisome. Nat. Rev. Microbiol. 4: 811-825.  https://doi.org/10.1038/nrmicro1526
  26. Buttner DJM, Reviews MB. 2012. Protein export according to schedule: architecture, assembly, and regulation of type III secretion systems from plant-and animal-pathogenic bacteria. Microbiol. Mol. Biol. Rev. 76: 262-310.  https://doi.org/10.1128/MMBR.05017-11
  27. Pieper R, Zhang Q, Parmar PP, Huang ST, Clark DJ, Alami H, et al. 2009. The Shigella dysenteriae serotype 1 proteome, profiled in the host intestinal environment, reveals major metabolic modifications and increased expression of invasive proteins. Proteomics 9: 5029-5045.  https://doi.org/10.1002/pmic.200900196
  28. Cleary P, LaPenta D, Vessela R, Lam H, Cue D. 1998. A globally disseminated M1 subclone of group A streptococci differs from other subclones by 70 kilobases of prophage DNA and capacity for high-frequency intracellular invasion. INFIBR 66: 5592-5597.  https://doi.org/10.1128/IAI.66.11.5592-5597.1998
  29. Aziz RK, Edwards RA, Taylor WW, Low DE, McGeer A, Kotb M. 2005. Mosaic prophages with horizontally acquired genes account for the emergence and diversification of the globally disseminated M1T1 clone of Streptococcus pyogenes. J. Bacteriol. Res. 187: 3311-3318.  https://doi.org/10.1128/JB.187.10.3311-3318.2005
  30. Goerke C, Pantucek R, Holtfreter S, Schulte B, Zink M, Grumann D, et al. 2009. Diversity of prophages in dominant Staphylococcus aureus clonal lineages. J. Bacteriol. Res. 191: 3462-3468.  https://doi.org/10.1128/JB.01804-08
  31. Mead PS, Griffin PM. 1998. Escherichia coli O157: H7. Lancet 352: 1207-1212.  https://doi.org/10.1016/S0140-6736(98)01267-7
  32. Figueroa-Bossi N, Uzzau S, Maloriol D, Bossi L. 2001. Variable assortment of prophages provides a transferable repertoire of pathogenic determinants in Salmonella. Mol. Microbiol. 39: 260-272.  https://doi.org/10.1046/j.1365-2958.2001.02234.x
  33. Cooke FJ, Wain J, Fookes M, Ivens A, Thomson N, Brown DJ, et al. 2007. Prophage sequences defining hot spots of genome variation in Salmonella enterica serovar Typhimurium can be used to discriminate between field isolates. Clin. Microbiol. Newsl. 45: 2590-2598.  https://doi.org/10.1128/JCM.00729-07
  34. Rahimi F, Bouzari M, Katouli M, Pourshafie MR. 2012. Prophage and antibiotic resistance profiles of methicillin-resistant Staphylococcus aureus strains in Iran. Arch. Virol. 157: 1807-1811.  https://doi.org/10.1007/s00705-012-1361-4
  35. Thomson N, Baker S, Pickard D, Fookes M, Anjum M, Hamlin N, et al. 2004. The role of prophage-like elements in the diversity of Salmonella enterica serovars. J. Mol. Biol. 339: 279-300.  https://doi.org/10.1016/j.jmb.2004.03.058
  36. Bae T, Baba T, Hiramatsu K, Schneewind OJMm. 2006. Prophages of Staphylococcus aureus Newman and their contribution to virulence. Mol. Microbiol. 62: 1035-1047.  https://doi.org/10.1111/j.1365-2958.2006.05441.x
  37. Hermans AP, Abee T, Zwietering MH, Aarts HJ. 2005. Identification of novel Salmonella enterica serovar Typhimurium DT104-specific prophage and nonprophage chromosomal sequences among serovar Typhimurium isolates by genomic subtractive hybridization. Appl. Environ. 71: 4979-4985.  https://doi.org/10.1128/AEM.71.9.4979-4985.2005
  38. Banks DJ, Beres SB, Musser JMJTim. 2002. The fundamental contribution of phages to GAS evolution, genome diversification and strain emergence. Trends Microbiol. 10: 515-521.  https://doi.org/10.1016/S0966-842X(02)02461-7
  39. Ohnishi M, Kurokawa K, Hayashi TJTim. 2001. Diversification of Escherichia coli genomes: are bacteriophages the major contributors? Trends Microbiol. 9: 481-485.  https://doi.org/10.1016/S0966-842X(01)02173-4
  40. Chen J, Novick RP. 2009. Phage-mediated intergeneric transfer of toxin genes. Science. 323: 139-141.  https://doi.org/10.1126/science.1164783
  41. Duerkop BA, Clements CV, Rollins D, Rodrigues JL, Hooper LVJPotNAoS. 2012. A composite bacteriophage alters colonization by an intestinal commensal bacterium. Proc Natl Acad Sci U S A 109: 17621-17626.  https://doi.org/10.1073/pnas.1206136109
  42. Mills S, Shanahan F, Stanton C, Hill C, Coffey A, Ross RPJGm. 2013. Movers and shakers: influence of bacteriophages in shaping the mammalian gut microbiota. Gut Microbes 4: 4-16.  https://doi.org/10.4161/gmic.22371
  43. Ubeda C, Maiques E, Knecht E, Lasa I, Novick RP, Penades JRJMm. 2005. Antibiotic-induced SOS response promotes horizontal dissemination of pathogenicity island-encoded virulence factors in staphylococci. Mol. Microbiol. 56: 836-844.  https://doi.org/10.1111/j.1365-2958.2005.04584.x
  44. Zhang Y, LeJeune JTJVm. 2008. Transduction of blaCMY-2, tet (A), and tet (B) from Salmonella enterica subspecies enterica serovar Heidelberg to S. Typhimurium. Vet. Microbiol. 129: 418-425.  https://doi.org/10.1016/j.vetmic.2007.11.032
  45. Yang F, Han B, Gu Y, Zhang KJSr. 2020. Swine liquid manure: A hotspot of mobile genetic elements and antibiotic resistance genes. Sci. Rep. 10: 15037. 
  46. Karaolis DK, Johnson JA, Bailey CC, Boedeker EC, Kaper JB, Reeves PRJPotNAoS. 1998. A Vibrio cholerae pathogenicity island associated with epidemic and pandemic strains. Proc. Natl. Acad. Sci. USA 95: 3134-3139.  https://doi.org/10.1073/pnas.95.6.3134
  47. Lindsay JA, Ruzin A, Ross HF, Kurepina N, Novick RPJMm. 1998. The gene for toxic shock toxin is carried by a family of mobile pathogenicity islands in Staphylococcus aureus. Mol. Microbiol. 29: 527-543.  https://doi.org/10.1046/j.1365-2958.1998.00947.x
  48. O'Shea YA, Boyd EFJFml. 2002. Mobilization of the Vibrio pathogenicity island between Vibrio cholerae isolates mediated by CP-T1 generalized transduction. FEMS Microbiol. Lett. 214: 153-157.  https://doi.org/10.1111/j.1574-6968.2002.tb11339.x
  49. Stewart PSJIjomm. 2002. Mechanisms of antibiotic resistance in bacterial biofilms. Int. J. Med. Microbiol. Suppl. 292: 107-113.  https://doi.org/10.1078/1438-4221-00196
  50. Dufour D, Leung V, Levesque CMJET. 2010. Bacterial biofilm: structure, function, and antimicrobial resistance. Endod Topics 22: 2-16.  https://doi.org/10.1111/j.1601-1546.2012.00277.x
  51. Arciola CR, Campoccia D, Speziale P, Montanaro L, Costerton JWJB. 2012. Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials. Biomaterials 33: 5967-5982.  https://doi.org/10.1016/j.biomaterials.2012.05.031
  52. Machado I, Silva LR, Giaouris ED, Melo LF, Simoes MJFRI. 2020. Quorum sensing in food spoilage and natural-based strategies for its inhibition. Int. Food Res. J. 127: 108754. 
  53. Galie S, Garcia-Gutierrez C, Miguelez EM, Villar CJ, Lombo FJFim. 2018. Biofilms in the food industry: health aspects and control methods. Front. Microbiol. 9: 898. 
  54. Pereira CS, Santos AJ, Bejerano-Sagie M, Correia PB, Marques JC, Xavier KBJMm. 2012. Phosphoenolpyruvate phosphotransferase system regulates detection and processing of the quorum sensing signal autoinducer-2. Mol. Microbiol. 84: 93-104.  https://doi.org/10.1111/j.1365-2958.2012.08010.x
  55. Khan F, Javaid A, Kim Y-MJCdt. 2019. Functional diversity of quorum sensing receptors in pathogenic bacteria: Interspecies, intraspecies and interkingdom level. Curr. Drug Targets 20: 655-667.  https://doi.org/10.2174/1389450120666181123123333
  56. Xue T, Zhao L, Sun H, Zhou X, Sun BJCr. 2009. LsrR-binding site recognition and regulatory characteristics in Escherichia coli AI-2 quorum sensing. Cell Res. 19: 1258-1268.  https://doi.org/10.1038/cr.2009.91
  57. Herzberg M, Kaye IK, Peti W, Wood TKJJob. 2006. YdgG (TqsA) controls biofilm formation in Escherichia coli K-12 through autoinducer 2 transport. J. Bacteriol. Res. 188: 587-598.  https://doi.org/10.1128/JB.188.2.587-598.2006
  58. Li J, Zhao XJFRI. 2020. Effects of quorum sensing on the biofilm formation and viable but non-culturable state. Int. Food Res. J. 137: 109742. 
  59. Chagas TPG, Seki L, Cury J, Oliveira J, Davila A, Silva D, et al. 2011. Multiresistance, beta-lactamase-encoding genes and bacterial diversity in hospital wastewater in Rio de Janeiro, Brazil. J. Appl. Microbiol. 111: 572-581.  https://doi.org/10.1111/j.1365-2672.2011.05072.x
  60. Zhu Y-G, Johnson TA, Su J-Q, Qiao M, Guo G-X, Stedtfeld RD, et al. 2013. Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proc. Natl. Acad. Sci. U S A 110: 3435-3440.  https://doi.org/10.1073/pnas.1222743110
  61. Li B, Yang Y, Ma L, Ju F, Guo F, Tiedje JM, et al. 2015. Metagenomic and network analysis reveal wide distribution and co-occurrence of environmental antibiotic resistance genes. ISME J. 9: 2490-2502.  https://doi.org/10.1038/ismej.2015.59
  62. Wu N, Qiao M, Zhang B, Cheng WD, Zhu YG. 2010. Abundance and diversity of tetracycline resistance genes in soils adjacent to representative swine feedlots in China. Environ. Sci. Technol. 44: 6933-6939.  https://doi.org/10.1021/es1007802
  63. Marti R, Scott A, Tien Y-C, Murray R, Sabourin L, Zhang Y, et al. 2013. Impact of manure fertilization on the abundance of antibiotic-resistant bacteria and frequency of detection of antibiotic resistance genes in soil and on vegetables at harvest. Appl. Environ. 79: 5701-5709.  https://doi.org/10.1128/AEM.01682-13
  64. Zhang X-X, Zhang TJEs, technology. 2011. Occurrence, abundance, and diversity of tetracycline resistance genes in 15 sewage treatment plants across China and other global locations. Environ. Sci. Technol. 45: 2598-2604.  https://doi.org/10.1021/es103672x
  65. Kang M, Ko Y-P, Liang X, Ross CL, Liu Q, Murray BE, et al. 2013. Collagen-binding microbial surface components recognizing adhesive matrix molecule (MSCRAMM) of Gram-positive bacteria inhibit complement activation via the classical pathway. J Biol Chem 288: 20520-20531.  https://doi.org/10.1074/jbc.M113.454462
  66. McCourt J, O'Halloran DP, McCarthy H, O'Gara JP, Geoghegan JAJFml. 2014. Fibronectin-binding proteins are required for biofilm formation by community-associated methicillin-resistant Staphylococcus aureus strain LAC. FEMS Microbiol. Lett. 353: 157-164.  https://doi.org/10.1111/1574-6968.12424
  67. O'Neill E, Pozzi C, Houston P, Humphreys H, Robinson DA, Loughman A, et al. 2008. A novel Staphylococcus aureus biofilm phenotype mediated by the fibronectin-binding proteins, FnBPA and FnBPB. J. Bacteriol. Res. 190: 3835-3850.  https://doi.org/10.1128/JB.00167-08
  68. Josefsson E, McCrea KW, Eidhin DN, O'Connell D, Cox J, Hook M, et al. 1998. Three new members of the serine-aspartate repeat protein multigene family of Staphylococcus aureus. Microbiology 144: 3387-3395.  https://doi.org/10.1099/00221287-144-12-3387
  69. Corrigan RM, Foster TJJP. 2009. An improved tetracycline-inducible expression vector for Staphylococcus aureus. Plasmid 61: 126-129.  https://doi.org/10.1016/j.plasmid.2008.10.001
  70. O' Brien L, Kerrigan SW, Kaw G, Hogan M, Penades J, Litt D, et al. 2002. Multiple mechanisms for the activation of human platelet aggregation by Staphylococcus aureus: roles for the clumping factors ClfA and ClfB, the serine-aspartate repeat protein SdrE and protein A. Mol. Microbiol. 44: 1033-1044.  https://doi.org/10.1046/j.1365-2958.2002.02935.x
  71. Ni Eidhin D, Perkins S, Francois P, Vaudaux P, Hook M, Foster TJJMm. 1998. Clumping factor B (ClfB), a new surface-located fibrinogen-binding adhesin of Staphylococcus aureus. Mol. Microbiol.30: 245-257.  https://doi.org/10.1046/j.1365-2958.1998.01050.x
  72. McDevitt D, Francois P, Vaudaux P, Foster TJMm. 1994. Molecular characterization of the clumping factor (fibrinogen receptor) of Staphylococcus aureus. Mol. Microbiol. 11: 237-248. https://doi.org/10.1111/j.1365-2958.1994.tb00304.x