과제정보
This research was supported by Korea Polar Research Institute (PE21150) and funded by the Ministry of Oceans and Fisheries.
참고문헌
- Chen S, Tong X, Woodard RW, Du G, Wu J, Chen J. 2008. Identification and characterization of bacterial cutinase. J. Biol. Chem. 283: 25854-25862. https://doi.org/10.1074/jbc.M800848200
- Vazquez-Alcantara L, Oliart-Ros RM, Garcia-Borquez A, Pena-Montes C. 2021. Expression of a cutinase of Moniliophthora roreri with polyester and PET-plastic residues degradation activity. Microbiol. Spectr. 9: 976.
- Yan Z, Wang L, Xia W, Liu Z, Gu L, Wu J. 2021. Synergistic biodegradation of poly (ethylene terephthalate) using Microbacterium oleivorans and Thermobifida fusca cutinase. Appl. Microbiol. Biotechnol. 105: 4551-4560. https://doi.org/10.1007/s00253-020-11067-z
- Yang S, Xu H, Yan Q, Liu Y, Zhou P, Jiang Z. 2013. A low molecular mass cutinase of Thielavia terrestris efficiently hydrolyzes poly (esters). J. Ind. Microbiol. Biotechnol. 40: 217-226. https://doi.org/10.1007/s10295-012-1222-x
- de Marco A. 2009. Strategies for successful recombinant expression of disulfide bond-dependent proteins in Escherichia coli. Microb. Cell Fact. 8: 26.
- Gaciarz A, Khatri NK, Velez-Suberbie ML, Saaranen MJ, Uchida Y, Keshavarz-Moore E, et al. 2017. Efficient soluble expression of disulfide bonded proteins in the cytoplasm of Escherichia coli in fed-batch fermentations on chemically defined minimal media. Microb. Cell Fact. 16: 108.
- Su L, Hong R, Guo X, Wu J, Xia Y. 2016. Short-chain aliphatic ester synthesis using Thermobifida fusca cutinase. Food Chem. 206: 131-136. https://doi.org/10.1016/j.foodchem.2016.03.051
- Dutta K, Dasu VV. 2011. Synthesis of short chain alkyl esters using cutinase from Burkholderia cepacia NRRL B2320. J. Molec. Catal. B. 72: 150-156. https://doi.org/10.1016/j.molcatb.2011.05.013
- Xu Y, Wang X, Liu X, Li X, Zhang C, Li W, et al. 2021. Discovery and development of a novel short-chain fatty acid ester synthetic biocatalyst under aqueous phase from Monascus purpureus isolated from Baijiu. Food Chem. 338: 128025.
- Mahapatra P, Kumari A, Garlapati VK, Banerjee R, Nag A. 2009. Enzymatic synthesis of fruit flavor esters by immobilized lipase from Rhizopus oligosporus optimized with response surface methodology. J. Molec. Catal. B. 60: 57-63. https://doi.org/10.1016/j.molcatb.2009.03.010
- Cvjetko M, Vorkapic-Furac J, Znidarsic-Plazl P. 2012. Isoamyl acetate synthesis in imidazolium-based ionic liquids using packed bed enzyme microreactor. Process Biochem. 47: 1344-1350. https://doi.org/10.1016/j.procbio.2012.04.028
- Jaiswal KS, Rathod VK. 2022. Process intensification of enzymatic synthesis of flavor esters: a review. Chem. Rec. 22: e202100213.
- Friedrich JL, Pena FP, Garcia-Galan C, Fernandez-Lafuente R, Ayub MA, Rodrigues RC. 2013. Effect of immobilization protocol on optimal conditions of ethyl butyrate synthesis catalyzed by lipase B from Candida antarctica. J. Chem. Technol. Biotechnol. 88: 1089-1095. https://doi.org/10.1002/jctb.3945
- Elias N, Wahab RA, Chandren S, Razak FIA, Jamalis J. 2019. Effect of operative variables and kinetic study of butyl butyrate synthesis by Candida rugosa lipase activated by chitosan-reinforced nanocellulose derived from raw oil palm leaves. Enzyme Microb. Technol. 130: 109367.
- Dos Santos MMO, Gama RS, de Carvalho Tavares IM, Santos PH, Goncalves MS, de Carvalho MS, et al. 2021. Application of lipase immobilized on a hydrophobic support for the synthesis of aromatic esters. Biotechnol. Appl. Biochem. 68: 538-546. https://doi.org/10.1002/bab.1959
- Vandamme EJ, Soetaert W. 2002. Bioflavours and fragrances via fermentation and biocatalysis. J. Chem. Technol. Biotechnol. 77: 1323-1332. https://doi.org/10.1002/jctb.722
- Khan NR, Rathod VK. 2015. Enzyme catalyzed synthesis of cosmetic esters and its intensification: A review. Process Biochem. 50: 1793-1806. https://doi.org/10.1016/j.procbio.2015.07.014
- Martinez A, Maicas S. 2021. Cutinases: characteristics and insights in industrial production. Catalyst 11: 1194.
- de Barros DP, Azevedo AM, Cabral JM, Fonseca LP. 2012. Optimization of flavor esters synthesis by Fusarium solani pisi cutinase. J. Food Biochem. 36: 275-284. https://doi.org/10.1111/j.1745-4514.2010.00535.x
- Duan X, Liu Y, You X, Jiang Z, Yang S, Yang S. 2017. High-level expression and characterization of a novel cutinase from Malbranchea cinnamomea suitable for butyl butyrate production. Biotechnol. Biofuels 10: 223.
- Nikolaivits E, Makris G, Topakas E. 2017. Immobilization of a cutinase from Fusarium oxysporum and application in pineapple flavor synthesis. J. Agric. Food Chem. 65: 3505-3511. https://doi.org/10.1021/acs.jafc.7b00659
- Xu H, Yan Q, Duan X, Yang S, Jiang Z. 2015. Characterization of an acidic cold-adapted cutinase from Thielavia terrestris and its application in flavor ester synthesis. Food Chem. 188: 439-445. https://doi.org/10.1016/j.foodchem.2015.05.026
- Won S, Yim JH, Kim H. 2022. Functional production, characterization, and immobilization of a cold-adapted cutinase from Antarctic Rhodococcus sp. Protein Expr. Purif. 195: 106077.
- Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, et al. 2018. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46: W296-W303. https://doi.org/10.1093/nar/gky427
- Basso A, Serban S. 2019. Industrial applications of immobilized enzymes-a review. Mol. Catal. 479: 110607.
- Martins AB, Friedrich JL, Rodrigues RC, Garcia-Galan C, Fernandez-Lafuente R, Ayub MA. 2013. Optimized butyl butyrate synthesis catalyzed by Thermomyces lanuginosus lipase. Biotechnol. Prog. 29: 1416-1421. https://doi.org/10.1002/btpr.1793
- Ahmed EH, Raghavendra T, Madamwar D. 2010. An alkaline lipase from organic solvent tolerant Acinetobacter sp. EH28: application for ethyl caprylate synthesis. Bioresour. Technol. 101: 3628-3634. https://doi.org/10.1016/j.biortech.2009.12.107
- Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, et al. 2021. PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res. 49(D1): D1388-D1395. https://doi.org/10.1093/nar/gkaa971
- Su A, Shirke A, J Baik, Y Zou, R Gross. 2018. Immobilized cutinases: preparation, solvent tolerance and thermal stability. Enzyme Microb. Technol. 116: 33-40. https://doi.org/10.1016/j.enzmictec.2018.05.010
- Wang Z, Su T, Zhao J. 2021. Immobilization of Fusarium solani cutinase onto magnetic genipin-crosslinked chitosan beads. Catalysts 11: 1158.
- Duan X, Jiang Z, Liu Y, Yan Q, Xiang M, Yang S. 2019. High-level expression of codon-optimized Thielavia terrestris cutinase suitable for ester biosynthesis and biodegradation. Int. J. Biol. Macromol. 135: 768-775. https://doi.org/10.1016/j.ijbiomac.2019.05.173
- Shen J, Cai X, Dou B, Qi F, Zhang X, Liu Z, Zheng Y. 2020. Expression and characterization of a CALB-type lipase from Sporisorium reilianum SRZ2 and its potential in short-chain flavor ester synthesis. Front. Chem. Sci. Eng. 14: 868-879. https://doi.org/10.1007/s11705-019-1889-x
- Foukis A, Gkini OA, Stergiou P, Papamichael EM. 2018. New insights and tools for the elucidation of lipase catalyzed esterification reaction mechanism in n-hexane: The synthesis of ethyl butyrate. Mol. Catal. 455: 159-163. https://doi.org/10.1016/j.mcat.2018.06.004
- Cai Y, Xing S, Zhang Q, Zhu R, Cheng K, Li C, et al. 2021. Expression, purification, properties, and substrate specificity analysis of Aspergillus niger GZUF36 lipase in Escherichia coli. Process Biochem. 111: 118-127. https://doi.org/10.1016/j.procbio.2021.09.002