DOI QR코드

DOI QR Code

Molecular Mechanism of L-Pyroglutamic Acid Interaction with the Human Sour Receptor

  • Sanung Eom (Department of Biotechnology, Chonnam National University) ;
  • Shinhui Lee (Department of Biotechnology, Chonnam National University) ;
  • Jiwon Lee (Department of Biotechnology, Chonnam National University) ;
  • Minsu Pyeon (Department of Biotechnology, Chonnam National University) ;
  • Hye Duck Yeom (Department of Biotechnology, Chonnam National University) ;
  • Jung Hee Song (Research and Development Division, World Institute of Kimchi) ;
  • Eun Ji Choi (Research and Development Division, World Institute of Kimchi) ;
  • Moeun Lee (Research and Development Division, World Institute of Kimchi) ;
  • Junho H Lee (Department of Biotechnology, Chonnam National University) ;
  • Ji Yoon Chang (Research and Development Division, World Institute of Kimchi)
  • Received : 2022.12.06
  • Accepted : 2022.12.24
  • Published : 2023.02.28

Abstract

Taste is classified into five types, each of which has evolved to play its respective role in mammalian survival. Sour taste is one of the important ways to judge whether food has gone bad, and the sour taste receptor (PKD2L1) is the gene behind it. Here, we investigated whether ʟ-pyroglutamic acid interacts with sour taste receptors through electrophysiology and mutation experiments using Xenopus oocytes. R299 of hPKD2L1 was revealed to be involved in ʟ-pyroglutamic acid binding in a concentration-dependent manner. As a result, it is possible to objectify the change in signal intensity according to the concentration of ʟ-pyroglutamic acid, an active ingredient involved in the taste of kimchi, at the molecular level. Since the taste of other ingredients can also be measured with the method used in this experiment, it is expected that an objective database of taste can be created.

Keywords

Acknowledgement

This research was supported by a grant from the World Institute of Kimchi (KE2022-1) and funded by the Ministry of Science, Republic of Korea. The study was approved by the Institutional Review Board of Chonnam National University (CNU IACUC-YB-201607).

References

  1. Breslin PA, Spector AC. 2008. Mammalian taste perception. Curr. Biol. 18: R148-R155. https://doi.org/10.1016/j.cub.2007.12.017
  2. Drewnowski A, Mennella JA, Johnson SL, Bellisle F. 2012. Sweetness and food preference. J. Nutr. 142: 1142S-1148S. https://doi.org/10.3945/jn.111.149575
  3. Glendinning JI. 1994. Is the bitter rejection response always adaptive? Physiol. Behavior. 56: 1217-1227. https://doi.org/10.1016/0031-9384(94)90369-7
  4. Huang AL, Chen X, Hoon MA, Chandrashekar J, Guo W, Trankner D, et al. 2006. The cells and logic for mammalian sour taste detection. Nature 442: 934-938. https://doi.org/10.1038/nature05084
  5. Adler E, Hoon MA, Mueller KL, Chandrashekar J, Ryba NJ, Zuker CS. 2000. A novel family of mammalian taste receptors. Cell 100: 693-702. https://doi.org/10.1016/S0092-8674(00)80705-9
  6. Chandrashekar J, Hoon MA, Ryba NJ, Zuker CS. 2006. The receptors and cells for mammalian taste. Nature 444: 288-294. https://doi.org/10.1038/nature05401
  7. Zhang Y, Hoon MA, Chandrashekar J, Mueller KL, Cook B, Wu D, et al. 2003. Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways. Cell 112: 293-301. https://doi.org/10.1016/S0092-8674(03)00071-0
  8. Nelson G, Hoon MA, Chandrashekar J, Zhang Y, Ryba NJ, Zuker CS. 2001. Mammalian sweet taste receptors. Cell 106: 381-390. https://doi.org/10.1016/S0092-8674(01)00451-2
  9. Zhao GQ, Zhang Y, Hoon MA, Chandrashekar J, Erlenbach I, Ryba NJ, et al. 2003. The receptors for mammalian sweet and umami taste. Cell 115: 255-266. https://doi.org/10.1016/S0092-8674(03)00844-4
  10. Chandrashekar J, Mueller KL, Hoon MA, Adler E, Feng L, Guo W, et al. 2000. T2Rs function as bitter taste receptors. Cell 100: 703-711. https://doi.org/10.1016/S0092-8674(00)80706-0
  11. Mueller KL, Hoon MA, Erlenbach I, Chandrashekar J, Zuker CS, Ryba NJ. 2005. The receptors and coding logic for bitter taste. Nature 434: 225-229. https://doi.org/10.1038/nature03352
  12. Chandrashekar J, Kuhn C, Oka Y, Yarmolinsky DA, Hummler E, Ryba NJ, et al. 2010. The cells and peripheral representation of sodium taste in mice. Nature 464: 297-301. https://doi.org/10.1038/nature08783
  13. Park K-Y, Jeong J-K, Lee Y-E, Daily III JW. 2014. Health benefits of kimchi (Korean fermented vegetables) as a probiotic food. J. Med. Food 17: 6-20. https://doi.org/10.1089/jmf.2013.3083
  14. Park JM, Shin JH, Gu JG, Yoon SJ, Song JC, Jeon WM, et al. 2011. Effect of antioxidant activity in kimchi during a short-term and over-ripening fermentation period. J. Biosci. Bioeng. 112: 356-359. https://doi.org/10.1016/j.jbiosc.2011.06.003
  15. Woo M, Kim MJ, Song YO. 2018. Bioactive compounds in kimchi improve the cognitive and memory functions impaired by amyloid beta. Nutrients 10: 1554.
  16. Kim B, Song JL, Ju JH, Kang SA, Park KY. 2015. Anticancer effects of kimchi fermented for different times and with added ingredients in human HT-29 colon cancer cells. Food Sci. Biotechnol. 24: 629-633. https://doi.org/10.1007/s10068-015-0082-3
  17. Kwak S-H, Cho Y-M, Noh G-M, Om A-S. 2014. Cancer preventive potential of kimchi lactic acid bacteria (Weissella cibaria, Lactobacillus plantarum). J. Cancer Prev. 19: 253-258. https://doi.org/10.15430/JCP.2014.19.4.253
  18. Park K-Y, Baek K-A, Rhee S-H, Cheigh H-S. 1995. Antimutagenic effect of kimchi. Food Sci. Biotechnol. 4: 141-145.
  19. Pfeiffer P, Konig H. 2009. Pyroglutamic acid: a novel compound in wines, pp. 233-240. Biology of Microorganisms on Grapes, in Must and in Wine, Ed. Springer
  20. Aiello A, Pepe E, De Luca L, Pizzolongo F, Romano R. 2022. Preliminary study on kinetics of pyroglutamic acid formation in fermented milk. Int. Dairy J. 126: 105233.
  21. Mucchetti G, Locci F, Massara P, Vitale R, Neviani E. 2002. Production of pyroglutamic acid by thermophilic lactic acid bacteria in hard-cooked mini-cheeses. J. Dairy Sci. 85: 2489-2496. https://doi.org/10.3168/jds.S0022-0302(02)74331-2
  22. Jimenez-Arias D, Garcia-Machado FJ, Morales-Sierra S, Luis JC, Suarez E, Hernandez M, et al. 2019. Lettuce plants treated with L-pyroglutamic acid increase yield under water deficit stress. Environ. Exp. Bot. 158: 215-222. https://doi.org/10.1016/j.envexpbot.2018.10.034
  23. Wang M, Chen J, Lin X, Huang L, Li H, Wen C, et al. 2021. High humidity aggravates the severity of arthritis in collagen-induced arthritis mice by upregulating xylitol and L-pyroglutamic acid. Arthritis Res. Ther. 23: 292.
  24. Gazme B, Boachie RT, Tsopmo A, Udenigwe CC. 2019. Occurrence, properties and biological significance of pyroglutamyl peptides derived from different food sources. Food Sci. Human Wellness 8: 268-274. https://doi.org/10.1016/j.fshw.2019.05.002
  25. Diepeveen J, Moerdijk-Poortvliet TC, van der Leij FR. 2022. Molecular insights into human taste perception and umami tastants: a review. J. Food Sci. 87: 1449-1465. https://doi.org/10.1111/1750-3841.16101
  26. Zhang Y, Venkitasamy C, Pan Z, Liu W, Zhao L. 2017. Novel umami ingredients: Umami peptides and their taste. J. Food Sci. 82: 16-23. https://doi.org/10.1111/1750-3841.13576
  27. Guan B, Chen X, Zhang H. 2013. Two-electrode voltage clamp, pp. 79-89. Ion Channels, Ed. Springer,
  28. Kumar A, Bachhawat AK. 2012. Pyroglutamic acid: throwing light on a lightly studied metabolite. Curr. Sci. 102: 288-297.
  29. Chang RB, Waters H, Liman ER. 2010. A proton current drives action potentials in genetically identified sour taste cells. Proc. Natl. Acad. Sci. USA 107: 22320-22325. https://doi.org/10.1073/pnas.1013664107
  30. Su Q, Hu F, Liu Y, Ge X, Mei C, Yu S, et al. 2018. Cryo-EM structure of the polycystic kidney disease-like channel PKD2L1. Nat. Commun. 9: 1192.
  31. Chandrashekar J, Yarmolinsky D, von Buchholtz L, Oka Y, Sly W, Ryba NJ, et al. 2009. The taste of carbonation. Science 326: 443-445. https://doi.org/10.1126/science.1174601
  32. Chen Y, Wei Z, Zhang T, Ng KH, Ye J, He W. 2022. Physicochemical, electronic nose and tongue, sensory evaluation determination combined with chemometrics to characterize Ficus hirta Vahl.(Moraceae) beer. J. Food Qual. 2022: 8948603.
  33. Deisingh AK, Stone DC, Thompson M. 2004. Applications of electronic noses and tongues in food analysis. Int. J. Food Sci. Technol. 39: 587-604. https://doi.org/10.1111/j.1365-2621.2004.00821.x