Acknowledgement
This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1A6A1A05011910), and by a grant from the Nakdong-gang National Institute of Biological Resources (NNIBR) funded by the Ministry of Environment (MOE) of the Republic of Korea (NNIBR202202108). We are grateful to Strategic Initiative for Microbiomes in Agriculture and Food funded by Ministry of Agriculture, Food and Rural Affairs (918010-4), for helping us with the genome sequencing.
References
- Orla-Jensen S. 1919. The lactic acid bacteria, pp. Ed. Host.
- Zlamala C, Schumann P, Kampfer P, Valens M, Rossello-Mora R, Lubitz W, et al. 2002. Microbacterium aerolatum sp. nov., isolated from the air in the 'Virgilkapelle'; in Vienna. Int. J. Syst. Evol. Microbiol. 52: 1229-1234. https://doi.org/10.1099/00207713-52-4-1229
- Young C-C, Busse H-J, Langer S, Chu J-N, Schumann P, Arun AB, et al. 2010. Microbacterium agarici sp. nov., Microbacterium humi sp. nov. and Microbacterium pseudoresistens sp. nov., isolated from the base of the mushroom Agaricus blazei. Int. J. Syst. Evol. Microbiol. 60: 854-860. https://doi.org/10.1099/ijs.0.014092-0
- Yang Z-W, Salam N, Mohany M, Chinnathambi A, Alharbi SA, Xiao M, et al. 2018. Microbacterium album sp. nov. and Microbacterium deserti sp. nov., two halotolerant actinobacteria isolated from desert soil. Int. J. Syst. Evol. Microbiol. 68: 217-222. https://doi.org/10.1099/ijsem.0.002485
- Lenchi N, Anzil A, Servais P, Kebbouche-Gana S, Gana ML, Lliros M. 2020. Microbacterium algeriense sp. nov., a novel actinobacterium isolated from Algerian oil production waters. Int. J. Syst. Evol. Microbiol. 70: 6044-6051. https://doi.org/10.1099/ijsem.0.004434
- Anand S, Bala K, Saxena A, Schumann P, Lal R. 2012. Microbacterium amylolyticum sp. nov., isolated from soil from an industrial waste site. Int. J. Syst. Evol. Microbiol. 62: 2114-2120. https://doi.org/10.1099/ijs.0.034439-0
- Kageyama A, Takahashi Y, Omura S. 2006. Microbacterium deminutum sp. nov., Microbacterium pumilum sp. nov. and Microbacterium aoyamense sp. nov. Int. J. Syst. Evol. Microbiol. 56: 2113-2117. https://doi.org/10.1099/ijs.0.64236-0
- Kim KK, Lee KC, Oh H-M, Lee J-S. 2008. Microbacterium aquimaris sp. nov., isolated from seawater. Int. J. Syst. Evol. Microbiol. 58: 1616-1620. https://doi.org/10.1099/ijs.0.65763-0
- Jung S-Y, Byun J-G, Park S-H, Oh S-H, Yang J-C, Jang J-W, et al. 2014. The study of distribution characteristics of vascular and naturalized plants in Dokdo, South Korea. J. Asia-Pacific Biodiv. 7: e197-e205. https://doi.org/10.1016/j.japb.2014.03.011
- Shim SH, Ji Hyun L, Yun DJ, Choo CO. 2010. Petrological characteristics and origin of volcaniclasts within the massive tuff breccia formation from Dokdo island, Korea. J. Petrolog. Soc. Korea 19: 141-156
- Son JS, Sumayo M, Hwang YJ, Kim BS, Ghim SY. 2014. Screening of plant growth-promoting rhizobacteria as elicitor of systemic resistance against gray leaf spot disease in pepper. Appl. Soil Ecol. 73: 1-8. https://doi.org/10.1016/j.apsoil.2013.07.016
- Hahm MS, Sumayo M, Hwang YJ, Jeon SA, Park SJ, Lee JY, et al. 2012. Biological control and plant growth promoting capacity of rhizobacteria on pepper under greenhouse and field conditions. J. Microbiol. 50: 380-385. https://doi.org/10.1007/s12275-012-1477-y
- Hwang Y-J, Ghim S-Y. 2017. Paenibacillus aceris sp. nov., isolated from the rhizosphere of Acer okamotoanum, a plant native to Ulleungdo Island, Republic of Korea. Int. J. Syst. Evol. Microbiol. 67: 1039-1045. https://doi.org/10.1099/ijsem.0.001748
- Hwang Y-J, Son J-S, Ghim S-Y. 2018. Paenibacillus elymi sp. nov., isolated from the rhizosphere of Elymus tsukushiensis, a plant native to the Dokdo Islands, Republic of Korea. Int. J, Syst. Evol. Microbiol. 68: 2615-2621. https://doi.org/10.1099/ijsem.0.002892
- Anzai Y, Kim H, Park JY, Wakabayashi H, Oyaizu H. 2000. Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int. J. Syst. Evol. Microbiol. 50: 1563-1589. https://doi.org/10.1099/00207713-50-4-1563
- Kim O-S, Cho Y-J, Lee K, Yoon S-H, Kim M, Na H, et al. 2012. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 62: 716-721. https://doi.org/10.1099/ijs.0.038075-0
- Thompson JD, Higgins DG, Gibson TJ. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680. https://doi.org/10.1093/nar/22.22.4673
- Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series. 41: 95-98.
- Huelsenbeck, J.P, Ronquist F. 2001. MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17: 754-755 https://doi.org/10.1093/bioinformatics/17.8.754
- Jukes T, Cantor C, Munro H. 1969. Evolution of protein molecules. 1969. Mammalian Protein Metabolism. Academic Press, New York. pp. 21-123.
- Makoto K.S, Tsunetoshi N. 2017. A modification of the PHYLIP program: a solution for the redundant cluster problem, and an implementation of an automatic bootstrapping on trees inferred from original data. Mol. Phylogenet. Evol. 109: 409-414. https://doi.org/10.1016/j.ympev.2017.02.012
- Felsenstein J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17: 368-376. https://doi.org/10.1007/BF01734359
- Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35: 1547-1549. https://doi.org/10.1093/molbev/msy096
- Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120. https://doi.org/10.1007/BF01731581
- Sambrook J, Fritsch EF, Maniatis T. 1989. Molecular cloning: a laboratory manual, pp. XX-XX. Ed. Cold spring harbor laboratory press.
- Yoon JH, Lee ST, Park YH. 1998. Inter- and intraspecific phylogenetic analysis of the genus nocardioides and related taxa based on 16S rDNA sequences. Int. J. Syst. Bacteriol. 48 Pt 1: 187-194. https://doi.org/10.1099/00207713-48-1-187
- Kolmogorov M, Bickhart DM, Behsaz B, Gurevich A, Rayko M, Shin SB, et al. 2020. metaFlye: scalable long-read metagenome assembly using repeat graphs. Nat. Methods 17: 1103-1110. https://doi.org/10.1038/s41592-020-00971-x
- Haft DH, DiCuccio M, Badretdin A, Brover V, Chetvernin V, O'Neill K, et al. 2017. RefSeq: an update on prokaryotic genome annotation and curation. Nucleic Acids Res. 46: D851-D860. https://doi.org/10.1093/nar/gkx1068
- Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S, Olsen GJ, et al. 2015. RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci. Rep. 5: 8365. https://doi.org/10.1038/srep08365
- Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP, Medema Marnix H, et al. 2021. antiSMASH 6.0: Improving cluster detection and comparison capabilities. Nucleic Acids Res. 49: W29-W35. https://doi.org/10.1093/nar/gkab335
- Richter M, Rossello-Mora R, Oliver Glockner F, Peplies J. 2016. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 32: 929-931. https://doi.org/10.1093/bioinformatics/btv681
- Richter M, Rossello-Mora R, Oliver Glockner F, Peplies J. 2016. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 32: 929-31. https://doi.org/10.1093/bioinformatics/btv681
- Meier-Kolthoff JP, Auch AF, Klenk HP, Goker M. 2013. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14: 60.
- Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. 2010. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11: 119.
- Xu L, Dong Z, Fang L, Luo Y, Wei Z, Guo H, et al. 2019. OrthoVenn2: a web server for whole-genome comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Res. 47: W52-W58. https://doi.org/10.1093/nar/gkz333
- Alanjary M, Steinke K, Ziemert N. 2019. AutoMLST: an automated web server for generating multi-locus species trees highlighting natural product potential. Nucleic Acids Res. 47: W276-W282. https://doi.org/10.1093/nar/gkz282
- Kampfer P, Irgang R, Poblete-Morales M, Glaeser SP, Cortez-San Martin M et al. 2017. Psychromonas aquatilis sp. nov., isolated from seawater samples obtained in the Chilean Antarctica. Int. J. Syst. Evol. Microbiol 67: 1306-1311. https://doi.org/10.1099/ijsem.0.001801
- Cowan ST, Steel KJ. 1965. Manual for the identification of medical bacteria. Manual for the Identification of Medical Bacteria. pp. 127.
- Minnikin D, O'donnell A, Goodfellow M, Alderson G, Athalye M, Schaal A, et al. 1984. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J. Microbiol. Methods 2: 233-241. https://doi.org/10.1016/0167-7012(84)90018-6
- Schwyn B, Neilands JB. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160: 47-56. https://doi.org/10.1016/0003-2697(87)90612-9
- Perez-Miranda S, Cabirol N, George-Tellez R, Zamudio-Rivera LS, Fernandez FJ. 2007. O-CAS, a fast and universal method for siderophore detection. J. Microbiol. Methods 70: 127-131. https://doi.org/10.1016/j.mimet.2007.03.023
- Neilands JB. 1995. Siderophores - Structure and function of microbial iron transport compounds. J. Biol. Chem. 270: 26723-26726. https://doi.org/10.1074/jbc.270.45.26723
- Crosa JH, Mey AR, Payne SM. 2004. Iron transport in bacteria, pp. Ed. ASM Press, Washington, D.C.