DOI QR코드

DOI QR Code

Microbacterium elymi sp. nov., Isolated from the Rhizospheric Soil of Elymus tsukushiensis, a Plant Native to the Dokdo Islands, Republic of Korea

  • Ye-Ji Hwang (Microbiology Research Department, Nakdonggang National Institute of Biological Resources) ;
  • Soo-Yeong Lee (Microbiology Research Department, Nakdonggang National Institute of Biological Resources) ;
  • Jin-Soo Son (Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB) ;
  • Jin-suk Youn (School of Life Sciences, Research Institute for Dok-do & Ulleung-do Island, Kyungpook National University) ;
  • Woong Lee (School of Life Sciences, Research Institute for Dok-do & Ulleung-do Island, Kyungpook National University) ;
  • Jae-Ho Shin (School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University) ;
  • Mi-Hwa Lee (Microbiology Research Department, Nakdonggang National Institute of Biological Resources) ;
  • Sa-Youl Ghim (School of Life Sciences, Research Institute for Dok-do & Ulleung-do Island, Kyungpook National University)
  • Received : 2022.11.13
  • Accepted : 2022.12.29
  • Published : 2023.02.28

Abstract

Microbacterium elymi KUDC0405T was isolated from the rhizosphere of Elymus tsukushiensis from the Dokdo Islands. The KUDC0405T strain was Gram-stain-positive, non-spore forming, non-motile, and facultatively anaerobic bacteria. Strain KUDC0405T was a rod-shaped bacterium with size dimensions of 0.3-0.4 × 0.7-0.8 ㎛. Based on 16S rRNA gene sequences, KUDC0405T was most closely related to Microbacterium bovistercoris NEAU-LLET (97.8%) and Microbacterium pseudoresistens CC-5209T (97.6%). The dDDH (digital DNA-DNA hybridization) values between KUDC0405T and M. bovistercoris NEAU-LLET and M. pseudoresistens CC-5209T were below 17.3% and 17.5%, respectively. The ANI (average nucleotide identity) values among strains KUDC0405T, M. bovistercoris NEAU-LLET, and M. pseudoresistens CC-5209T were 86.6% and 80.7%, respectively. The AAI (average amino acid identity) values were 64.66% and 64.97%, respectively, between KUDC0405T and its closest related type strains. The genome contained 3,596 CDCs, three rRNAs, 46 tRNAs, and three non-coding RNAs (ncRNAs). The genomic DNA GC content was 70.4%. The polar lipids included diphosphatydilglycerol, glycolipid, phosphatydilglycerol, and unknown phospholipid, and the major fatty acids were anteiso-C17:0 and iso-C16:0. Strain KUDC0405T contained MK-12 as the major menaquinone. Based on genotypic, phylogenetic, and phenotypic properties, strain KUDC0405T should be considered a novel species within the genus Microbacterium, for which we propose the name M. elymi sp. nov., and the type strain as KUDC0405T (=KCTC 49411T, =CGMCC1.18472T).

Keywords

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1A6A1A05011910), and by a grant from the Nakdong-gang National Institute of Biological Resources (NNIBR) funded by the Ministry of Environment (MOE) of the Republic of Korea (NNIBR202202108). We are grateful to Strategic Initiative for Microbiomes in Agriculture and Food funded by Ministry of Agriculture, Food and Rural Affairs (918010-4), for helping us with the genome sequencing.

References

  1. Orla-Jensen S. 1919. The lactic acid bacteria, pp. Ed. Host. 
  2. Zlamala C, Schumann P, Kampfer P, Valens M, Rossello-Mora R, Lubitz W, et al. 2002. Microbacterium aerolatum sp. nov., isolated from the air in the 'Virgilkapelle'; in Vienna. Int. J. Syst. Evol. Microbiol. 52: 1229-1234.  https://doi.org/10.1099/00207713-52-4-1229
  3. Young C-C, Busse H-J, Langer S, Chu J-N, Schumann P, Arun AB, et al. 2010. Microbacterium agarici sp. nov., Microbacterium humi sp. nov. and Microbacterium pseudoresistens sp. nov., isolated from the base of the mushroom Agaricus blazei. Int. J. Syst. Evol. Microbiol. 60: 854-860.  https://doi.org/10.1099/ijs.0.014092-0
  4. Yang Z-W, Salam N, Mohany M, Chinnathambi A, Alharbi SA, Xiao M, et al. 2018. Microbacterium album sp. nov. and Microbacterium deserti sp. nov., two halotolerant actinobacteria isolated from desert soil. Int. J. Syst. Evol. Microbiol. 68: 217-222.  https://doi.org/10.1099/ijsem.0.002485
  5. Lenchi N, Anzil A, Servais P, Kebbouche-Gana S, Gana ML, Lliros M. 2020. Microbacterium algeriense sp. nov., a novel actinobacterium isolated from Algerian oil production waters. Int. J. Syst. Evol. Microbiol. 70: 6044-6051.  https://doi.org/10.1099/ijsem.0.004434
  6. Anand S, Bala K, Saxena A, Schumann P, Lal R. 2012. Microbacterium amylolyticum sp. nov., isolated from soil from an industrial waste site. Int. J. Syst. Evol. Microbiol. 62: 2114-2120.  https://doi.org/10.1099/ijs.0.034439-0
  7. Kageyama A, Takahashi Y, Omura S. 2006. Microbacterium deminutum sp. nov., Microbacterium pumilum sp. nov. and Microbacterium aoyamense sp. nov. Int. J. Syst. Evol. Microbiol. 56: 2113-2117.  https://doi.org/10.1099/ijs.0.64236-0
  8. Kim KK, Lee KC, Oh H-M, Lee J-S. 2008. Microbacterium aquimaris sp. nov., isolated from seawater. Int. J. Syst. Evol. Microbiol. 58: 1616-1620.  https://doi.org/10.1099/ijs.0.65763-0
  9. Jung S-Y, Byun J-G, Park S-H, Oh S-H, Yang J-C, Jang J-W, et al. 2014. The study of distribution characteristics of vascular and naturalized plants in Dokdo, South Korea. J. Asia-Pacific Biodiv. 7: e197-e205.  https://doi.org/10.1016/j.japb.2014.03.011
  10. Shim SH, Ji Hyun L, Yun DJ, Choo CO. 2010. Petrological characteristics and origin of volcaniclasts within the massive tuff breccia formation from Dokdo island, Korea. J. Petrolog. Soc. Korea 19: 141-156 
  11. Son JS, Sumayo M, Hwang YJ, Kim BS, Ghim SY. 2014. Screening of plant growth-promoting rhizobacteria as elicitor of systemic resistance against gray leaf spot disease in pepper. Appl. Soil Ecol. 73: 1-8.  https://doi.org/10.1016/j.apsoil.2013.07.016
  12. Hahm MS, Sumayo M, Hwang YJ, Jeon SA, Park SJ, Lee JY, et al. 2012. Biological control and plant growth promoting capacity of rhizobacteria on pepper under greenhouse and field conditions. J. Microbiol. 50: 380-385.  https://doi.org/10.1007/s12275-012-1477-y
  13. Hwang Y-J, Ghim S-Y. 2017. Paenibacillus aceris sp. nov., isolated from the rhizosphere of Acer okamotoanum, a plant native to Ulleungdo Island, Republic of Korea. Int. J. Syst. Evol. Microbiol. 67: 1039-1045.  https://doi.org/10.1099/ijsem.0.001748
  14. Hwang Y-J, Son J-S, Ghim S-Y. 2018. Paenibacillus elymi sp. nov., isolated from the rhizosphere of Elymus tsukushiensis, a plant native to the Dokdo Islands, Republic of Korea. Int. J, Syst. Evol. Microbiol. 68: 2615-2621.  https://doi.org/10.1099/ijsem.0.002892
  15. Anzai Y, Kim H, Park JY, Wakabayashi H, Oyaizu H. 2000. Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int. J. Syst. Evol. Microbiol. 50: 1563-1589.  https://doi.org/10.1099/00207713-50-4-1563
  16. Kim O-S, Cho Y-J, Lee K, Yoon S-H, Kim M, Na H, et al. 2012. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 62: 716-721.  https://doi.org/10.1099/ijs.0.038075-0
  17. Thompson JD, Higgins DG, Gibson TJ. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680.  https://doi.org/10.1093/nar/22.22.4673
  18. Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series. 41: 95-98. 
  19. Huelsenbeck, J.P, Ronquist F. 2001. MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17: 754-755  https://doi.org/10.1093/bioinformatics/17.8.754
  20. Jukes T, Cantor C, Munro H. 1969. Evolution of protein molecules. 1969. Mammalian Protein Metabolism. Academic Press, New York. pp. 21-123. 
  21. Makoto K.S, Tsunetoshi N. 2017. A modification of the PHYLIP program: a solution for the redundant cluster problem, and an implementation of an automatic bootstrapping on trees inferred from original data. Mol. Phylogenet. Evol. 109: 409-414.  https://doi.org/10.1016/j.ympev.2017.02.012
  22. Felsenstein J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17: 368-376.  https://doi.org/10.1007/BF01734359
  23. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35: 1547-1549.  https://doi.org/10.1093/molbev/msy096
  24. Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120.  https://doi.org/10.1007/BF01731581
  25. Sambrook J, Fritsch EF, Maniatis T. 1989. Molecular cloning: a laboratory manual, pp. XX-XX. Ed. Cold spring harbor laboratory press. 
  26. Yoon JH, Lee ST, Park YH. 1998. Inter- and intraspecific phylogenetic analysis of the genus nocardioides and related taxa based on 16S rDNA sequences. Int. J. Syst. Bacteriol. 48 Pt 1: 187-194.  https://doi.org/10.1099/00207713-48-1-187
  27. Kolmogorov M, Bickhart DM, Behsaz B, Gurevich A, Rayko M, Shin SB, et al. 2020. metaFlye: scalable long-read metagenome assembly using repeat graphs. Nat. Methods 17: 1103-1110. https://doi.org/10.1038/s41592-020-00971-x
  28. Haft DH, DiCuccio M, Badretdin A, Brover V, Chetvernin V, O'Neill K, et al. 2017. RefSeq: an update on prokaryotic genome annotation and curation. Nucleic Acids Res. 46: D851-D860. https://doi.org/10.1093/nar/gkx1068
  29. Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S, Olsen GJ, et al. 2015. RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci. Rep. 5: 8365. https://doi.org/10.1038/srep08365
  30. Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP, Medema Marnix H, et al. 2021. antiSMASH 6.0: Improving cluster detection and comparison capabilities. Nucleic Acids Res. 49: W29-W35.  https://doi.org/10.1093/nar/gkab335
  31. Richter M, Rossello-Mora R, Oliver Glockner F, Peplies J. 2016. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 32: 929-931.  https://doi.org/10.1093/bioinformatics/btv681
  32. Richter M, Rossello-Mora R, Oliver Glockner F, Peplies J. 2016. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 32: 929-31.  https://doi.org/10.1093/bioinformatics/btv681
  33. Meier-Kolthoff JP, Auch AF, Klenk HP, Goker M. 2013. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14: 60. 
  34. Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. 2010. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11: 119. 
  35. Xu L, Dong Z, Fang L, Luo Y, Wei Z, Guo H, et al. 2019. OrthoVenn2: a web server for whole-genome comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Res. 47: W52-W58.  https://doi.org/10.1093/nar/gkz333
  36. Alanjary M, Steinke K, Ziemert N. 2019. AutoMLST: an automated web server for generating multi-locus species trees highlighting natural product potential. Nucleic Acids Res. 47: W276-W282.  https://doi.org/10.1093/nar/gkz282
  37. Kampfer P, Irgang R, Poblete-Morales M, Glaeser SP, Cortez-San Martin M et al. 2017. Psychromonas aquatilis sp. nov., isolated from seawater samples obtained in the Chilean Antarctica. Int. J. Syst. Evol. Microbiol 67: 1306-1311.  https://doi.org/10.1099/ijsem.0.001801
  38. Cowan ST, Steel KJ. 1965. Manual for the identification of medical bacteria. Manual for the Identification of Medical Bacteria. pp. 127. 
  39. Minnikin D, O'donnell A, Goodfellow M, Alderson G, Athalye M, Schaal A, et al. 1984. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J. Microbiol. Methods 2: 233-241.  https://doi.org/10.1016/0167-7012(84)90018-6
  40. Schwyn B, Neilands JB. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160: 47-56.  https://doi.org/10.1016/0003-2697(87)90612-9
  41. Perez-Miranda S, Cabirol N, George-Tellez R, Zamudio-Rivera LS, Fernandez FJ. 2007. O-CAS, a fast and universal method for siderophore detection. J. Microbiol. Methods 70: 127-131.  https://doi.org/10.1016/j.mimet.2007.03.023
  42. Neilands JB. 1995. Siderophores - Structure and function of microbial iron transport compounds. J. Biol. Chem. 270: 26723-26726.  https://doi.org/10.1074/jbc.270.45.26723
  43. Crosa JH, Mey AR, Payne SM. 2004. Iron transport in bacteria, pp. Ed. ASM Press, Washington, D.C.