DOI QR코드

DOI QR Code

Protection of Skin Fibroblasts from Infrared-A-Induced Photo-Damage Using Ginsenoside Rg3(S)-Incorporated Soybean Lecithin Liposomes

  • Won Ho Jung (Department of Bioscience and Biotechnology, Konkuk University) ;
  • Jihyeon Song (Department of Bioscience and Biotechnology, Konkuk University) ;
  • Gayeon You (Department of Bioscience and Biotechnology, Konkuk University) ;
  • Jun Hyuk Lee (Department of Bioscience and Biotechnology, Konkuk University) ;
  • Sin Won Lee (Department of Bioscience and Biotechnology, Konkuk University) ;
  • Joong-Hoon Ahn (Department of Bioscience and Biotechnology, Konkuk University) ;
  • Hyejung Mok (Department of Bioscience and Biotechnology, Konkuk University)
  • Received : 2022.10.27
  • Accepted : 2022.12.20
  • Published : 2023.01.28

Abstract

Protection of skin cells from chronic infrared-A (IRA) irradiation is crucial for anti-photoaging of the skin. In this study, we investigated the protective activity of Rg3(S) and Rg3(S)-incorporated anionic soybean lecithin liposomes (Rg3/Lipo) with a size of approximately 150 nm against IRA-induced photodamage in human fibroblasts. The formulated Rg3/Lipo showed increased solubility in aqueous solution up to a concentration of 200 ㎍/ml, compared to free Rg3(S). In addition, Rg3/Lipo exhibited superior colloidal stability in aqueous solutions and biocompatibility for normal human dermal fibroblasts (NHDFs). After repeated IRA irradiation on NHDFs, elevated levels of cellular and mitochondrial reactive oxygen species (ROS) were greatly reduced by Rg3(S) and Rg3/Lipo. In addition, cells treated with Rg3/Lipo exhibited noticeably reduced apoptotic signals following IRA irradiation compared to untreated cells. Thus, considering aqueous solubility and cellular responses, Rg3/Lipo could serve as a promising infrared protector for healthy aging of skin cells.

Keywords

Acknowledgement

This study was supported by the Korean Society of Ginseng (2021) and the Ministry of Health and Welfare, Republic of Korea (grant no. HI22C0537).

References

  1. Yoon SJ, Kim SK, Lee NY, Choi YR, Kim HS, Gupta H, et al. 2021. Effect of Korean Red Ginseng on metabolic syndrome. J. Ginseng Res. 45: 380-389. https://doi.org/10.1016/j.jgr.2020.11.002
  2. Xia JX, Ma SJ, Zhu X, Chen C, Zhang R, Cao ZL, et al. 2022. Versatile ginsenoside Rg3 liposomes inhibit tumor metastasis by capturing circulating tumor cells and destroying metastatic niches. Sci. Adv. 8: eabj1262.
  3. Lee H, Hong Y, Tran Q, Cho H, Kim M, Kim C, et al. 2019. A new role for the ginsenoside RG3 in antiaging via mitochondria function in ultraviolet-irradiated human dermal fibroblasts. J. Ginseng Res. 43: 431-441. https://doi.org/10.1016/j.jgr.2018.07.003
  4. Nam JJ, Min JE, Son MH, Oh JH, Kang S. 2017. Ultraviolet- and infrared-induced 11 beta-hydroxysteroid dehydrogenase type 1 activating skin photoaging is inhibited by red ginseng extract containing high concentration of ginsenoside Rg3(S). Photodermatol. Photo. 33: 311-320. https://doi.org/10.1111/phpp.12337
  5. Yang J, Song J, Kim SJ, You G, Lee JB, Mok H. 2022. Chronic infrared-A irradiation-induced photoaging of human dermal fibroblasts from different donors at physiological temperature. Photodermatol. Photoimmunol. Photomed. 38: 571-581. https://doi.org/10.1111/phpp.12793
  6. Yu H, Teng LR, Meng QF, Li YH, Sun XC, Lu JH, et al. 2013. Development of liposomal ginsenoside Rg3: Formulation optimization and evaluation of its anticancer effects. Int. J. Pharmaceut. 450: 250-258. https://doi.org/10.1016/j.ijpharm.2013.04.065
  7. Li L, Ni JY, Li M, Chen JR, Han LF, Zhu Y, et al. 2017. Ginsenoside Rg3 micelles mitigate doxorubicin-induced cardiotoxicity and enhance its anticancer efficacy. Drug Deliv. 24: 1617-1630. https://doi.org/10.1080/10717544.2017.1391893
  8. Ren ZG, Chen XM, Hong LJ, Zhao XX, Cui GY, Li A, et al. 2020. Nanoparticle conjugation of ginsenoside Rg3 inhibits hepatocellular carcinoma development and metastasis. Small 16: e1905233.
  9. Cao LQ, Wang S, Zhang LM, Li JN. 2022. mPEG-b-P(Glu-co-Phe) nanoparticles increase gastric retention time and gastric ulcer treatment efficacy of 20(S)-ginsenoside Rg3. Biomed. Pharmacother. 146: 112608.
  10. Li L, Wang Y, Guo R, Li S, Ni JY, Gao S, et al. 2020. Ginsenoside Rg3-loaded, reactive oxygen species-responsive polymeric nanoparticles for alleviating myocardial ischemia-reperfusion injury. J. Control. Release 317: 259-272. https://doi.org/10.1016/j.jconrel.2019.11.032
  11. Robert C, Couedelo L, Vaysse C, Michalski MC. 2020. Vegetable lecithins: A review of their compositional diversity, impact on lipid metabolism and potential in cardiometabolic disease prevention. Biochimie 169: 121-132. https://doi.org/10.1016/j.biochi.2019.11.017
  12. van Hoogevest P, Wendel A. 2014. The use of natural and synthetic phospholipids as pharmaceutical excipients. Eur. J. Lipid Sci. Technol. 116: 1088-1107. https://doi.org/10.1002/ejlt.201400219
  13. Lee MS, Lee JW, Kim SJ, Pham-Nguyen OV, Park J, Park JH, et al. 2021. Comparison study of the effects of cationic liposomes on delivery across 3D skin tissue and whitening effects in pigmented 3D skin. Macromol. Biosci. 21: e2000413.
  14. Kim H, Kim SY, Sim GY, Ahn JH. 2020. Synthesis of 4-hydroxybenzoic acid derivatives in Escherichia coli. J. Agric. Food Chem. 68: 9743-9749. https://doi.org/10.1021/acs.jafc.0c03149
  15. Kim JY, Kim SJ, You G, Choi ES, Lee JH, Mok H, et al. 2021. Protective effects of titanium dioxide-based emulsion after short-term and long-term infrared-A ray irradiation on skin cells. Biotechnol. Bioproc. E. 26: 595-605. https://doi.org/10.1007/s12257-020-0308-y
  16. Yang KE, Jang HJ, Hwang IH, Hong EM, Lee MG, Lee S, et al. 2020. Stereoisomer-specific ginsenoside 20(S)-Rg3 reverses replicative senescence of human diploid fibroblasts via Akt-mTOR-sirtuin signaling. J. Ginseng Res. 44: 341-349. https://doi.org/10.1016/j.jgr.2019.08.002
  17. Lim CJ, Choi WY, Jung HJ. 2014. Stereoselectiye skin anti-photoaging properties of ginsenoside Rg3 in UV-B-irradiated keratinocytes. Biol. Pharm. Bull. 37: 1583-1590. https://doi.org/10.1248/bpb.b14-00167
  18. W. Piyasirananda AB, A. Ganesan, S. Bidula, L. Stokes. 2021. Insights into the structure-activity relationship of glycosides as positive allosteric modulators acting on P2X7 receptors. Mol. Pharmacol. 99: 163-174. https://doi.org/10.1124/molpharm.120.000129
  19. van Hoogevest P, Wendel A. 2014. The use of natural and synthetic phospholipids as pharmaceutical excipients. Eur. J. Lipid Sci. Technol. 116: 1088-1107. https://doi.org/10.1002/ejlt.201400219
  20. Li Y, Xu F, Li X, Chen SY, Huang LY, Bian YY, et al. 2021. Development of curcumin-loaded composite phospholipid ethosomes for enhanced skin permeability and vesicle stability. Int. J. Pharm. 592: 119936.
  21. Wan HD, Li D. 2015. Highly efficient biotransformation of ginsenoside Rb1 and Rg3 using beta-galactosidase from Aspergillus sp. Rsc. Adv. 5: 78874-78879. https://doi.org/10.1039/C5RA11519A
  22. Doppalapudi S, Jain A, Chopra DK, Khan W. 2017. Psoralen loaded liposomal nanocarriers for improved skin penetration and efficacy of topical PUVA in psoriasis. Eur. J. Pharm. Sci. 96: 515-529. https://doi.org/10.1016/j.ejps.2016.10.025
  23. Li J, Hu M, Xu H, Yu X, Ye F, Wang K, et al. 2016. Influence of type and proportion of lyoprotectants on lyophilized ginsenoside Rg3 liposomes. J. Pharm. Pharmacol. 68: 1-13. https://doi.org/10.1111/jphp.12489
  24. Maione-Silva L, de Castro EG, Nascimento TL, Cintra ER, Moreira LC, Cintra BAS, et al. 2019. Ascorbic acid encapsulated into negatively charged liposomes exhibits increased skin permeation, retention and enhances collagen synthesis by fibroblasts. Sci. Rep. 9: 522.
  25. Hua S. 2015. Lipid-based nano-delivery systems for skin delivery of drugs and bioactives. Front. Pharmacol. 6: 219.
  26. Zhu Y, Liang JM, Gao CF, Wang AN, Xia JX, Hong C, et al. 2021. Multifunctional ginsenoside Rg3-based liposomes for glioma targeting therapy. J. Control. Release 330: 641-657. https://doi.org/10.1016/j.jconrel.2020.12.036
  27. Lu YY, Wu CH, Hong CH, Chang KL, Lee CH. 2021. GLUT-1 enhances glycolysis, oxidative stress, and fibroblast proliferation in keloid. Life (Basel) 11: 505.
  28. Logue SE, Elgendy M, Martin SJ. 2009. Expression, purification and use of recombinant annexin V for the detection of apoptotic cells. Nat. Protoc. 4: 1383-1395.  https://doi.org/10.1038/nprot.2009.143