Acknowledgement
This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2015R1A6A103032522; 2016M3A9A5919255) and partially by a research fund of Soonchunhyang University.
References
- Yoo JY, Kim SS. 2016. Probiotics and prebiotics: Present status and future perspectives on metabolic disorders. Nutrients 8: 173-173. https://doi.org/10.3390/nu8030173
- George Kerry R, Patra JK, Gouda S, Park Y, Shin H-S, Das G. 2018. Benefaction of probiotics for human health: a review. J. Food Drug Anal. 26: 927-939. https://doi.org/10.1016/j.jfda.2018.01.002
- Davani-Davari D, Negahdaripour M, Karimzadeh I, Seifan M, Mohkam M, Masoumi SJ, et al. 2019. Prebiotics: definition, types, sources, mechanisms, and clinical applications. Foods 8: 92.
- Markowiak P, Slizewska K. 2017. Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients 9: 1021.
- Sugahara H, Odamaki T, Fukuda S, Kato T, Xiao J-z, Abe F, et al. 2015. Probiotic Bifidobacterium longum alters gut luminal metabolism through modification of the gut microbial community. Sci. Rep. 5: 13548.
- Reynes B, Palou M, Rodriguez AM, Palou A. 2019. Regulation of adaptive thermogenesis and browning by prebiotics and postbiotics. Front. Physiol. 9: 1908.
- Rahman MS, Kang I, Lee Y, Habib MA, Choi BJ, Kang JS, et al. 2021. Bifidobacterium longum subsp. infantis YB0411 inhibits adipogenesis in 3T3-L1 pre-adipocytes and reduces high-fat-diet-induced obesity in mice. J. Agric. Food Chem. 69: 6032-6042. https://doi.org/10.1021/acs.jafc.1c01440
- Hossain M, Park DS, Rahman MS, Ki SJ, Lee YR, Imran KM, et al. 2020. Bifidobacterium longum DS0956 and Lactobacillus rhamnosus DS0508 culture-supernatant ameliorate obesity by inducing thermogenesis in obese-mice. Benef. Microbes. 11: 361-373. https://doi.org/10.3920/BM2019.0179
- Hu J, Kyrou I, Tan BK, Dimitriadis GK, Ramanjaneya M, Tripathi G, et al. 2016. Short-chain fatty acid acetate stimulates adipogenesis and mitochondrial biogenesis via GPR43 in brown adipocytes. Endocrinology 157: 1881-1894. https://doi.org/10.1210/en.2015-1944
- Haynes VR, Michael NJ, van den Top M, Zhao FY, Brown RD, De Souza D, et al. 2020. A neural basis for octanoic acid regulation of energy balance. Mol. Metab. 34: 54-71. https://doi.org/10.1016/j.molmet.2020.01.002
- Cho Y, Shamim Rahman M, Kim Y-S. 2019. Obesity regulation through gut microbiota modulation and adipose tissue browning. J. Life Sci. 29: 922-940.
- Chichlowski M, Shah N, Wampler JL, Wu SS, Vanderhoof JA. 2020. Bifidobacterium longum subspecies infantis (B. infantis) in pediatric nutrition: current state of knowledge. Nutrients 12: 1581.
- Christian M. 2020. Elucidation of the roles of brown and brite fat genes: GPR120 is a modulator of brown adipose tissue function. Exp. Physiol. 105: 1201-1205. https://doi.org/10.1113/EP087877
- Cypess AM, Kahn CR. 2010. Brown fat as a therapy for obesity and diabetes. Curr. Opin. Endocrinol. Diabetes Obes. 17: 143-149. https://doi.org/10.1097/MED.0b013e328337a81f
- Zwick RK, Guerrero-Juarez CF, Horsley V, Plikus MV. 2018. Anatomical, physiological, and functional diversity of adipose tissue. Cell Metab. 27: 68-83. https://doi.org/10.1016/j.cmet.2017.12.002
- Longo M, Zatterale F, Naderi J, Parrillo L, Formisano P, Raciti GA, et al. 2019. Adipose tissue dysfunction as determinant of obesity-associated metabolic complications. Int. J. Mol. Sci. 20: 2358.
- Ouchi N, Parker JL, Lugus JJ, Walsh K. 2011. Adipokines in inflammation and metabolic disease. Nat. Rev. Immunol. 11: 85-97. https://doi.org/10.1038/nri2921
- Rosenwald M, Wolfrum C. 2014. The origin and definition of brite versus white and classical brown adipocytes. Adipocyte 3: 4-9. https://doi.org/10.4161/adip.26232
- Hossain M, Imran KM, Rahman MS, Yoon D, Marimuthu V, Kim YS. 2020. Sinapic acid induces the expression of thermogenic signature genes and lipolysis through activation of PKA/CREB signaling in brown adipocytes. BMB Rep. 53: 142-147. https://doi.org/10.5483/BMBRep.2020.53.3.093
- Loft A, Forss I, Siersbaek MS, Schmidt SF, Larsen A-SB, Madsen JGS, et al. 2015. Browning of human adipocytes requires KLF11 and reprogramming of PPARγ superenhancers. Genes Dev. 29: 7-22. https://doi.org/10.1101/gad.250829.114
- Rahman MS, Imran KM, Hossain M, Lee T-J, Kim Y-S. 2021. Biochanin A induces a brown-fat phenotype via improvement of mitochondrial biogenesis and activation of AMPK signaling in murine C3H10T1/2 mesenchymal stem cells. Phytother. Res. 35: 920-931. https://doi.org/10.1002/ptr.6845
- Imran KM, Rahman N, Yoon D, Jeon M, Lee B-T, Kim Y-S. 2017. Cryptotanshinone promotes commitment to the brown adipocyte lineage and mitochondrial biogenesis in C3H10T1/2 mesenchymal stem cells via AMPK and p38-MAPK signaling. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1862: 1110-1120. https://doi.org/10.1016/j.bbalip.2017.08.001
- Tzameli I, Fang H, Ollero M, Shi H, Hamm JK, Kievit P, et al. 2004. Regulated production of a peroxisome proliferator-activated receptor-γ ligand during an early phase of adipocyte differentiation in 3T3-L1 adipocytes. J. Biol. Chem. 279: 36093-36102. https://doi.org/10.1074/jbc.M405346200
- Becerril S, Gomez-Ambrosi J, Martin M, Moncada R, Sesma P, Burrell MA, et al. 2013. Role of PRDM16 in the activation of brown fat programming. Relevance to the development of obesity. Histol. Histopathol. 28: 1411-1425.
- Wang W, Ishibashi J, Trefely S, Shao M, Cowan AJ, Sakers A, et al. 2019. A PRDM16-driven metabolic signal from adipocytes regulates precursor cell fate. Cell Metab. 30: 174-189.e175. https://doi.org/10.1016/j.cmet.2019.05.005
- Ishibashi J, Seale P. 2015. Functions of Prdm16 in thermogenic fat cells. Temperature (Austin) 2: 65-72. https://doi.org/10.4161/23328940.2014.974444
- Ventura-Clapier R, Garnier A, Veksler V. 2008. Transcriptional control of mitochondrial biogenesis: the central role of PGC-1α. Cardiovasc. Res. 79: 208-217. https://doi.org/10.1093/cvr/cvn098
- Cheng C-F, Ku H-C, Lin H. 2018. PGC-1α as a pivotal factor in lipid and metabolic regulation. Int. J. Mol. Sci. 19: 3447.
- Smith RAJ, Hartley RC, Cocheme HM, Murphy MP. 2012. Mitochondrial pharmacology. Trends Pharmacol. Sci. 33: 341-352. https://doi.org/10.1016/j.tips.2012.03.010
- Coleman OI, Haller D. 2017. Bacterial signaling at the intestinal epithelial interface in inflammation and cancer. Front. Immunol. 8: 1927.
- Mishra A, Lai GC, Yao LJ, Aung TT, Shental N, Rotter-Maskowitz A, et al. 2021. Microbial exposure during early human development primes fetal immune cells. Cell 184: 3394-3409.e3320. https://doi.org/10.1016/j.cell.2021.04.039
- Kim JS, Choe H, Kim KM, Lee YR, Rhee MS, Park DS. 2018. Lactobacillus porci sp. nov., isolated from small intestine of a swine. Int. J. Syst. Evol. Microbiol. 68: 3118-3124. https://doi.org/10.1099/ijsem.0.002949
- Prasad J, Gill H, Smart J, Gopal PK. 1998. Selection and characterisation of Lactobacillus and Bifidobacterium strains for use as probiotics. Int. Dairy J. 8: 993-1002. https://doi.org/10.1016/S0958-6946(99)00024-2
- Heymsfield SB, Wadden TA. 2017. Mechanisms, pathophysiology, and management of obesity. New Eng. J. Med. 376: 254-266. https://doi.org/10.1056/NEJMra1514009
- Petrakis D, Margina D, Tsarouhas K, Tekos F, Stan M, Nikitovic D, et al. 2020. Obesity - a risk factor for increased COVID-19 prevalence, severity and lethality (Review). Mol. Med. Rep. 22: 9-19. https://doi.org/10.3892/mmr.2020.11127
- Vallianou N, Stratigou T, Christodoulatos GS, Tsigalou C, Dalamaga M. 2020. Probiotics, prebiotics, synbiotics, postbiotics, and obesity: current evidence, controversies, and perspectives. Curr. Obes. Rep. 9: 179-192. https://doi.org/10.1007/s13679-020-00379-w
- Rosen ED, Walkey CJ, Puigserver P, Spiegelman BM. 2000. Transcriptional regulation of adipogenesis. Genes Dev. 14: 1293-1307. https://doi.org/10.1101/gad.14.11.1293
- Mota de Sa P, Richard AJ, Hang H, Stephens JM. 2017. Transcriptional regulation of adipogenesis. Comp. Physiol. 7: 635-674. https://doi.org/10.1002/cphy.c160022
- Rajesh Y, Sarkar D. 2021. Association of adipose tissue and adipokines with development of obesity-induced liver cancer. Int. J. Mol. Sci. 22: 2163.
- Deng Y, Scherer PE. 2010. Adipokines as novel biomarkers and regulators of the metabolic syndrome. Ann. N Y Acad. Sci. 1212: E1-E19. https://doi.org/10.1111/j.1749-6632.2010.05875.x
- An HM, Park SY, Lee DK, Kim JR, Cha MK, Lee SW, et al. 2011. Antiobesity and lipid-lowering effects of Bifidobacterium spp. in high fat diet-induced obese rats. Lipids Health Dis. 10: 116.
- Arias-Mutis OJ, Marrachelli VG, Ruiz-Sauri A, Alberola A, Morales JM, Such-Miquel L, et al. 2017. Development and characterization of an experimental model of diet-induced metabolic syndrome in rabbit. PLoS One 12: e0178315.
- Liu Y, Gao Y, Ma F, Sun M, Mu G, Tuo Y. 2020. The ameliorative effect of Lactobacillus plantarum Y44 oral administration on inflammation and lipid metabolism in obese mice fed with a high fat diet. Food Funct. 11: 5024-5039. https://doi.org/10.1039/D0FO00439A
- Soundharrajan I, Kuppusamy P, Srisesharam S, Lee JC, Sivanesan R, Kim D, et al. 2020. Positive metabolic effects of selected probiotic bacteria on diet-induced obesity in mice are associated with improvement of dysbiotic gut microbiota. FASEB J. 34: 12289-12307. https://doi.org/10.1096/fj.202000971R
- Stine RR, Shapira SN, Lim HW, Ishibashi J, Harms M, Won KJ, et al. 2016. EBF2 promotes the recruitment of beige adipocytes in white adipose tissue. Mol. Metab. 5: 57-65. https://doi.org/10.1016/j.molmet.2015.11.001
- Lee P, Werner CD, Kebebew E, Celi FS. 2014. Functional thermogenic beige adipogenesis is inducible in human neck fat. Int. J. Obes. 38: 170-176. https://doi.org/10.1038/ijo.2013.82
- Miyamoto J, Hasegawa S, Kasubuchi M, Ichimura A, Nakajima A, Kimura I. 2016. Nutritional signaling via free fatty acid receptors. Int. J. Mol. Sci. 17: 450-450. https://doi.org/10.3390/ijms17040450
- Ichimura A, Hasegawa S, Kasubuchi M, Kimura I. 2014. Free fatty acid receptors as therapeutic targets for the treatment of diabetes. Front. Pharmacol. 5: 236.
- Wang A, Si H, Liu D, Jiang H. 2011. Butyrate activates the cAMP-protein kinase A-cAMP response element-binding protein signaling pathway in Caco-2 cells. J. Nutr. 142: 1-6. https://doi.org/10.3945/jn.111.148155
- Wauson EM, Dbouk HA, Ghosh AB, Cobb MH. 2014. G protein-coupled receptors and the regulation of autophagy. Trends Endocrinol. Metab. 25: 274-282. https://doi.org/10.1016/j.tem.2014.03.006
- Barella LF, Jain S, Kimura T, Pydi SP. 2021. Metabolic roles of G protein-coupled receptor signaling in obesity and type 2 diabetes. FEBS J. 288: 2622-2644. https://doi.org/10.1111/febs.15800