DOI QR코드

DOI QR Code

Reduced Tomato Bacterial Wilt by Ferrous Chloride Application

  • Hyeon Ji Kim (Division of Horticultural Science, Gyeongsang National University) ;
  • Su Min Kim (Division of Horticultural Science, Gyeongsang National University) ;
  • Yeon Hwa Kim (Division of Horticultural Science, Gyeongsang National University) ;
  • Jeong Hoon Park (Division of Horticultural Science, Gyeongsang National University) ;
  • Dong Ki Kang (Division of Horticultural Science, Gyeongsang National University) ;
  • Jae Gill Yun (Division of Horticultural Science, Gyeongsang National University) ;
  • Ryoung Shin (RIKEN Center for Sustainable Resource Science) ;
  • Jeum Kyu Hong (Division of Horticultural Science, Gyeongsang National University)
  • Received : 2023.01.17
  • Accepted : 2023.02.09
  • Published : 2023.03.31

Abstract

Exogenous ferrous chloride (FeCl2) suppressed in vitro growth of Ralstonia pseudosolanacearum, causing bacteria for tomato bacterial wilt. More than 50 μM of FeCl2 reduced the in vitro bacterial growth in dosedependent manners. Two to 200 μM of FeCl2 did not affect the fresh weight of detached tomato leaves at 3 and 5 days after the petiole dipping without the bacterial inoculation. The bacterial wilt of the detached tomato leaves was evaluated by inoculating two different inoculum densities of R. pseudosolanacearum (105 and 107 cfu/ml) in the presence of FeCl2. Bacterial wilt in the detached leaves by 105 cfu/ml was efficiently attenuated by 10-200 μM of FeCl2 at 3 and 5 days post-inoculation (dpi), but bacterial wilt by 107 cfu/ml was only reduced by 200 μM of FeCl2 at 3 and 5 dpi. These results suggest that iron nutrients can be included in the integrated disease management of tomato bacterial wilt.

Keywords

References

  1. Ahammed, G. J., Wu, M., Wang, Y., Yan, Y., Mao, Q., Ren, J. et al. 2020. Melatonin alleviates iron stress by improving iron homeostasis, antioxidant defense and secondary metabolism in cucumber. Sci. Hortic. 265: 109205.
  2. Awan, Z. A., Shoaib, A. and Khan, K. A. 2019. Crosstalk of Zn in combination with other fertilizers underpins interactive effects and induces resistance in tomato plant against early blight disease. Plant Pathol. J. 35: 330-340. https://doi.org/10.5423/PPJ.OA.01.2019.0002
  3. Aznar, A., Chen, N. W. G., Thomine, S. and Dellagi, A. 2015. Immunity to plant pathogens and iron homeostasis. Plant Sci. 240: 90-97. https://doi.org/10.1016/j.plantsci.2015.08.022
  4. Bakeer, A. R. T., Abdel-Latef, M. A. E., Afifi, M. A. and Barakat, M. E. 2012. Application of microelements and sodium and potassium salts on tomato plants and their role in suppressing powdery mildew disease. World Res. J. Plant Pathol. 1: 1-10.
  5. Berry, S. Z., Madumadu, G. G. and Uddin, M. R. 1988. Effect of calcium and nitrogen nutrition on bacterial canker disease of tomato. Plant Soil 112: 113-120. https://doi.org/10.1007/BF02181760
  6. Blachinski, D., Shtienberg, D., Dinoor, A., Kafkafi, U., Sujkowski, L. S., Zitter, T. A. et al. 1996. Influence of foliar application of nitrogen and potassium on Alternaria diseases in potato, tomato and cotton. Phytoparasitica 24: 281-292. https://doi.org/10.1007/BF02981411
  7. Choi, S. Y., Kim, N. G., Kim, S.-M. and Lee, B. C. 2022. First report of bacterial wilt by Ralstonia pseudosolanacearum on peanut in Korea. Res. Plant Dis. 28: 54-56. (In Korean) https://doi.org/10.5423/RPD.2022.28.1.54
  8. Deberdt, P., Guyot, J., Coranson-Beaudu, R., Launay, J., Noreskal, M., Riviere, P. et al. 2014. Diversity of Ralstonia solanacearum in French Guiana expands knowledge of the "emerging ecotype". Phytopathology 104: 586-596. https://doi.org/10.1094/PHYTO-09-13-0264-R
  9. Ding, S., Shao, X., Li, J., Ahammed, G. J., Yao, Y., Ding, J. et al. 2021. Nitrogen forms and metabolism affect plant defence to foliar and root pathogens in tomato. Plant Cell Environ. 44: 1596-1610. https://doi.org/10.1111/pce.14019
  10. Dordas, C. 2008. Role of nutrients in controlling plant diseases in sustainable agriculture: a review. Agron. Sustain. Dev. 28: 33-46. https://doi.org/10.1051/agro:2007051
  11. Duffy, B. K. and Defago, G. 1997. Zinc improves biocontrol of Fusarium crown and root rot of tomato by Pseudomonas fluorescens and represses the production of pathogen metabolites inhibitory to bacterial antibiotic biosynthesis. Phytopathology 87: 1250-1257. https://doi.org/10.1094/PHYTO.1997.87.12.1250
  12. Duffy, B. K. and Defago, G. 1999. Macro- and microelement fertilizers influence the severity of Fusarium crown and root rot of tomato in a soilless production system. HortScience 34: 287-291. https://doi.org/10.21273/HORTSCI.34.2.287
  13. Fleurat-Lessard, P., Dedaldechamp, F., Thibault, F., Bere, E. and Roblin, G. 2011. Antifungal effects of iron sulfate on grapevine fungal pathogens. Sci. Hortic. 130: 517-523. https://doi.org/10.1016/j.scienta.2011.07.004
  14. Flores-Cruz, Z. and Allen, C. 2009. Ralstonia solanacearum encounters an oxidative environment during tomato infection. Mol. Plant-Microbe Interact. 22: 773-782. https://doi.org/10.1094/MPMI-22-7-0773
  15. Hashem, A. R. 1995. Influence of iron on the growth of the tomato wilt pathogen, Fusarium oxysporum, isolated in Saudi Arabia. J. Plant Dis. Prot. 102: 326-330.
  16. Heine, G., Max, J. F. J., Fuhrs, H., Moran-Puente, D. W., Heintz, D. and Horst, W. J. 2011. Effect of manganese on the resistance of tomato to Pseudocercospora fuligena. J. Plant Nutr. Soil Sci. 174: 827-836. https://doi.org/10.1002/jpln.201000440
  17. Hong, J. K., Jang, S. J., Lee, Y. H., Jo, Y. S., Yun, J. G., Jo, H. et al. 2018a. Reduced bacterial wilt in tomato plants by bactericidal peroxyacetic acid mixture treatment. Plant Pathol. J. 34: 78-84. https://doi.org/10.5423/PPJ.NT.06.2017.0131
  18. Hong, J. K., Jo, Y. S., Ryoo, D. H., Jung, J. H., Kwon, H. J., Lee, Y. H. et al. 2018b. Alternaria spots in tomato leaves differently delayed by four plant essential oil vapours. Res. Plant Dis. 24: 292-301. https://doi.org/10.5423/RPD.2018.24.4.292
  19. Hong, J. K., Kang, S. R., Kim, Y. H., Yoon, D. J., Kim, D. H., Kim, H. J. et al. 2013. Hydrogen peroxide- and nitric oxide-mediated disease control of bacterial wilt in tomato plants. Plant Pathol. J. 29: 386-396. https://doi.org/10.5423/PPJ.OA.04.2013.0043
  20. Hong, J. K., Kim, H. J., Jung, H., Yang, H. J., Kim, D. H., Sung, C. H. et al. 2016. Differential control efficacies of vitamin treatments against bacterial wilt and grey mould diseases in tomato plants. Plant Pathol. J. 32: 469-480. https://doi.org/10.5423/PPJ.OA.03.2016.0076
  21. Jiang, J.-F., Li, J.-G. and Dong, Y.-H. 2013. Effect of calcium nutrition on resistance of tomato against bacterial wilt induced by Ralstonia solanacearum. Eur. J. Plant Pathol. 136: 547-555. https://doi.org/10.1007/s10658-013-0186-7
  22. Jiang, J. F., Wan, X., Li, J. G. and Dong, Y. H. 2016. Effect of boron nutrition on resistance response of tomato against bacterial wilt caused by Ralstonia solanacearum. J. Plant Pathol. 98: 117-122.
  23. Jo, Y. S., Park, H. B., Kim, J. Y., Choi, S. M., Lee, D. S., Kim, D. H. et al. 2020. Menadione sodium bisulfite-protected tomato leaves against grey mould via antifungal activity and enhanced plant immunity. Plant Pathol. J. 36: 335-345. https://doi.org/10.5423/PPJ.OA.06.2020.0113
  24. Jogaiah, S., Abdelrahman, M., Tran, L.-S. and Shin-ichi, I. 2013. Characterization of rhizosphere fungi that mediate resistance in tomato against bacterial wilt disease. J. Exp. Bot. 64: 3829-3842. https://doi.org/10.1093/jxb/ert212
  25. John, R., Ahmad, P., Gadgil, K. and Sharma, S. 2009. Heavy metal toxicity: effect on plant growth, biochemical parameters and metal accumulation by Brassica juncea L. Int. J. Plant Prod. 3: 65-76.
  26. Kurabachew, H. and Wydra, K. 2013. Characterization of plant growth promoting rhizobacteria and their potential as bioprotectant against tomato bacterial wilt caused by Ralstonia solanacearum. Biol. Control 67: 75-83. https://doi.org/10.1016/j.biocontrol.2013.07.004
  27. Lee, Y. H., Choi, C. W., Kim, S. H., Yun, J. G., Chang, S. W., Kim, Y. S. et al. 2012. Chemical pesticides and plant essential oils for disease control of tomato bacterial wilt. Plant Pathol. J. 28: 32-39. https://doi.org/10.5423/PPJ.OA.10.2011.0200
  28. Li, G., Kronzucker, H. J. and Shi, W. 2016. Root developmental adaptation to Fe toxicity: mechanisms and management. Plant Signal. Behav. 11: e1117722.
  29. Liu, G., Greenshields, D. L., Sammynaiken, R., Hirji, R. N., Selvaraj, G. and Wei, Y. 2007. Targeted alterations in iron homeostasis underlie plant defense responses. J. Cell Sci. 120: 596-605. https://doi.org/10.1242/jcs.001362
  30. Macur, R. E., Mathre, D. E. and Olsen, R. A. 1991. Interactions between iron nutrition and Verticillium wilt resistance in tomato. Plant Soil 134: 281-286. https://doi.org/10.1007/BF00012047
  31. Muthoni, J., Shimelis, H., Melis, R. and Kinyua, Z. M. 2014. Response of potato genotypes to bacterial wilt caused by Ralstonia solanacearum (Smith) (Yabuuchi et al.) in the tropical highlands. Am. J. Potato Res. 91: 215-232. https://doi.org/10.1007/s12230-013-9340-1
  32. Pradhanang, P. M., Momol, M. T., Olson, S. M. and Jones, J. B. 2003. Effects of plant essential oils on Ralstonia solanacearum population density and bacterial wilt incidence in tomato. Plant Dis. 87: 423-427. https://doi.org/10.1094/PDIS.2003.87.4.423
  33. Reyt, G., Boudouf, S., Boucherez, J., Gaymard, F. and Briat, J.-F. 2015. Iron- and ferritin-dependent reactive oxygen species distribution: impact on Arabidopsis root system architecture. Mol. Plant 8: 439-453. https://doi.org/10.1016/j.molp.2014.11.014
  34. Singh, D., Yadav, D. K., Sinha, S. and Choudhary, G. 2014. Effect of temperature, cultivars, injury of root and inoculums load of Ralstonia solanacearum to cause bacterial wilt of tomato. Arch. Phytopathol. Plant Prot. 47: 1574-1583. https://doi.org/10.1080/03235408.2013.851332
  35. Souri, M. K., Hatamian, M. and Tesfamariam, T. 2019. Plant growth stage influences heavy metal accumulation in leafy vegetables of garden cress and sweet basil. Chem. Biol. Technol. Agric. 6: 25.
  36. Swanson, J. K., Yao, J., Tans-Kersten, J. and Allen, C. 2005. Behavior of Ralstonia solanacearum race 3 biovar 2 during latent and active infection of geranium. Phytopathology 95: 136-143. https://doi.org/10.1094/PHYTO-95-0136
  37. Tan, S., Dong, Y., Liao, H., Huang, J., Song, S., Xu, Y. et al. 2013. Antagonistic bacterium Bacillus amyloliquefaciens induces resistance and controls the bacterial wilt of tomato. Pest Manag. Sci. 69: 1245-1252. https://doi.org/10.1002/ps.3491
  38. Tano, J., Ripa, M. B., Tondo, M. L., Carrau, A., Petrocelli, S., Rodriguez, M. V. et al. 2021. Light modulates important physiological features of Ralstonia pseudosolanacearum during the colonization of tomato plants. Sci. Rep. 11: 14531.
  39. Tewari, R. K., Hadacek, F., Sassmann, S. and Lang, I. 2013. Iron deprivation-induced reactive oxygen species generation leads to non-autolytic PCD in Brassica napus leaves. Environ. Exp. Bot. 91: 74-83. https://doi.org/10.1016/j.envexpbot.2013.03.006
  40. Tripathi, R., Tewari, R., Singh, K. P., Keswani, C., Minkina, T., Srivastava, A. K. et al. 2022. Plant mineral nutrition and disease resistance: a significant linkage for sustainable crop protection. Front. Plant Sci. 13: 883970.
  41. Turhadi, T., Hamim, H., Ghulamahdi, M. and Miftahudin, M. 2019. Iron toxicity-induced physiological and metabolite profile variations among tolerant and sensitive rice varieties. Plant Signal. Behav. 14: 1682829.
  42. Wang, L., Pan, T., Gao, X., An, J., Ning, C., Li, S. et al. 2022. Silica nanoparticles activate defense responses by reducing reactive oxygen species under Ralstonia solanacearum infection in tomato plants. NanoImpact 28: 100418.
  43. Yamazaki, H. and Hoshina, T. 1995. Calcium nutrition affects resistance of tomato seedlings to bacterial wilt. HortScience 30: 91-93. https://doi.org/10.21273/HORTSCI.30.1.91