References
- Ahammed, G. J., Wu, M., Wang, Y., Yan, Y., Mao, Q., Ren, J. et al. 2020. Melatonin alleviates iron stress by improving iron homeostasis, antioxidant defense and secondary metabolism in cucumber. Sci. Hortic. 265: 109205.
- Awan, Z. A., Shoaib, A. and Khan, K. A. 2019. Crosstalk of Zn in combination with other fertilizers underpins interactive effects and induces resistance in tomato plant against early blight disease. Plant Pathol. J. 35: 330-340. https://doi.org/10.5423/PPJ.OA.01.2019.0002
- Aznar, A., Chen, N. W. G., Thomine, S. and Dellagi, A. 2015. Immunity to plant pathogens and iron homeostasis. Plant Sci. 240: 90-97. https://doi.org/10.1016/j.plantsci.2015.08.022
- Bakeer, A. R. T., Abdel-Latef, M. A. E., Afifi, M. A. and Barakat, M. E. 2012. Application of microelements and sodium and potassium salts on tomato plants and their role in suppressing powdery mildew disease. World Res. J. Plant Pathol. 1: 1-10.
- Berry, S. Z., Madumadu, G. G. and Uddin, M. R. 1988. Effect of calcium and nitrogen nutrition on bacterial canker disease of tomato. Plant Soil 112: 113-120. https://doi.org/10.1007/BF02181760
- Blachinski, D., Shtienberg, D., Dinoor, A., Kafkafi, U., Sujkowski, L. S., Zitter, T. A. et al. 1996. Influence of foliar application of nitrogen and potassium on Alternaria diseases in potato, tomato and cotton. Phytoparasitica 24: 281-292. https://doi.org/10.1007/BF02981411
- Choi, S. Y., Kim, N. G., Kim, S.-M. and Lee, B. C. 2022. First report of bacterial wilt by Ralstonia pseudosolanacearum on peanut in Korea. Res. Plant Dis. 28: 54-56. (In Korean) https://doi.org/10.5423/RPD.2022.28.1.54
- Deberdt, P., Guyot, J., Coranson-Beaudu, R., Launay, J., Noreskal, M., Riviere, P. et al. 2014. Diversity of Ralstonia solanacearum in French Guiana expands knowledge of the "emerging ecotype". Phytopathology 104: 586-596. https://doi.org/10.1094/PHYTO-09-13-0264-R
- Ding, S., Shao, X., Li, J., Ahammed, G. J., Yao, Y., Ding, J. et al. 2021. Nitrogen forms and metabolism affect plant defence to foliar and root pathogens in tomato. Plant Cell Environ. 44: 1596-1610. https://doi.org/10.1111/pce.14019
- Dordas, C. 2008. Role of nutrients in controlling plant diseases in sustainable agriculture: a review. Agron. Sustain. Dev. 28: 33-46. https://doi.org/10.1051/agro:2007051
- Duffy, B. K. and Defago, G. 1997. Zinc improves biocontrol of Fusarium crown and root rot of tomato by Pseudomonas fluorescens and represses the production of pathogen metabolites inhibitory to bacterial antibiotic biosynthesis. Phytopathology 87: 1250-1257. https://doi.org/10.1094/PHYTO.1997.87.12.1250
- Duffy, B. K. and Defago, G. 1999. Macro- and microelement fertilizers influence the severity of Fusarium crown and root rot of tomato in a soilless production system. HortScience 34: 287-291. https://doi.org/10.21273/HORTSCI.34.2.287
- Fleurat-Lessard, P., Dedaldechamp, F., Thibault, F., Bere, E. and Roblin, G. 2011. Antifungal effects of iron sulfate on grapevine fungal pathogens. Sci. Hortic. 130: 517-523. https://doi.org/10.1016/j.scienta.2011.07.004
- Flores-Cruz, Z. and Allen, C. 2009. Ralstonia solanacearum encounters an oxidative environment during tomato infection. Mol. Plant-Microbe Interact. 22: 773-782. https://doi.org/10.1094/MPMI-22-7-0773
- Hashem, A. R. 1995. Influence of iron on the growth of the tomato wilt pathogen, Fusarium oxysporum, isolated in Saudi Arabia. J. Plant Dis. Prot. 102: 326-330.
- Heine, G., Max, J. F. J., Fuhrs, H., Moran-Puente, D. W., Heintz, D. and Horst, W. J. 2011. Effect of manganese on the resistance of tomato to Pseudocercospora fuligena. J. Plant Nutr. Soil Sci. 174: 827-836. https://doi.org/10.1002/jpln.201000440
- Hong, J. K., Jang, S. J., Lee, Y. H., Jo, Y. S., Yun, J. G., Jo, H. et al. 2018a. Reduced bacterial wilt in tomato plants by bactericidal peroxyacetic acid mixture treatment. Plant Pathol. J. 34: 78-84. https://doi.org/10.5423/PPJ.NT.06.2017.0131
- Hong, J. K., Jo, Y. S., Ryoo, D. H., Jung, J. H., Kwon, H. J., Lee, Y. H. et al. 2018b. Alternaria spots in tomato leaves differently delayed by four plant essential oil vapours. Res. Plant Dis. 24: 292-301. https://doi.org/10.5423/RPD.2018.24.4.292
- Hong, J. K., Kang, S. R., Kim, Y. H., Yoon, D. J., Kim, D. H., Kim, H. J. et al. 2013. Hydrogen peroxide- and nitric oxide-mediated disease control of bacterial wilt in tomato plants. Plant Pathol. J. 29: 386-396. https://doi.org/10.5423/PPJ.OA.04.2013.0043
- Hong, J. K., Kim, H. J., Jung, H., Yang, H. J., Kim, D. H., Sung, C. H. et al. 2016. Differential control efficacies of vitamin treatments against bacterial wilt and grey mould diseases in tomato plants. Plant Pathol. J. 32: 469-480. https://doi.org/10.5423/PPJ.OA.03.2016.0076
- Jiang, J.-F., Li, J.-G. and Dong, Y.-H. 2013. Effect of calcium nutrition on resistance of tomato against bacterial wilt induced by Ralstonia solanacearum. Eur. J. Plant Pathol. 136: 547-555. https://doi.org/10.1007/s10658-013-0186-7
- Jiang, J. F., Wan, X., Li, J. G. and Dong, Y. H. 2016. Effect of boron nutrition on resistance response of tomato against bacterial wilt caused by Ralstonia solanacearum. J. Plant Pathol. 98: 117-122.
- Jo, Y. S., Park, H. B., Kim, J. Y., Choi, S. M., Lee, D. S., Kim, D. H. et al. 2020. Menadione sodium bisulfite-protected tomato leaves against grey mould via antifungal activity and enhanced plant immunity. Plant Pathol. J. 36: 335-345. https://doi.org/10.5423/PPJ.OA.06.2020.0113
- Jogaiah, S., Abdelrahman, M., Tran, L.-S. and Shin-ichi, I. 2013. Characterization of rhizosphere fungi that mediate resistance in tomato against bacterial wilt disease. J. Exp. Bot. 64: 3829-3842. https://doi.org/10.1093/jxb/ert212
- John, R., Ahmad, P., Gadgil, K. and Sharma, S. 2009. Heavy metal toxicity: effect on plant growth, biochemical parameters and metal accumulation by Brassica juncea L. Int. J. Plant Prod. 3: 65-76.
- Kurabachew, H. and Wydra, K. 2013. Characterization of plant growth promoting rhizobacteria and their potential as bioprotectant against tomato bacterial wilt caused by Ralstonia solanacearum. Biol. Control 67: 75-83. https://doi.org/10.1016/j.biocontrol.2013.07.004
- Lee, Y. H., Choi, C. W., Kim, S. H., Yun, J. G., Chang, S. W., Kim, Y. S. et al. 2012. Chemical pesticides and plant essential oils for disease control of tomato bacterial wilt. Plant Pathol. J. 28: 32-39. https://doi.org/10.5423/PPJ.OA.10.2011.0200
- Li, G., Kronzucker, H. J. and Shi, W. 2016. Root developmental adaptation to Fe toxicity: mechanisms and management. Plant Signal. Behav. 11: e1117722.
- Liu, G., Greenshields, D. L., Sammynaiken, R., Hirji, R. N., Selvaraj, G. and Wei, Y. 2007. Targeted alterations in iron homeostasis underlie plant defense responses. J. Cell Sci. 120: 596-605. https://doi.org/10.1242/jcs.001362
- Macur, R. E., Mathre, D. E. and Olsen, R. A. 1991. Interactions between iron nutrition and Verticillium wilt resistance in tomato. Plant Soil 134: 281-286. https://doi.org/10.1007/BF00012047
- Muthoni, J., Shimelis, H., Melis, R. and Kinyua, Z. M. 2014. Response of potato genotypes to bacterial wilt caused by Ralstonia solanacearum (Smith) (Yabuuchi et al.) in the tropical highlands. Am. J. Potato Res. 91: 215-232. https://doi.org/10.1007/s12230-013-9340-1
- Pradhanang, P. M., Momol, M. T., Olson, S. M. and Jones, J. B. 2003. Effects of plant essential oils on Ralstonia solanacearum population density and bacterial wilt incidence in tomato. Plant Dis. 87: 423-427. https://doi.org/10.1094/PDIS.2003.87.4.423
- Reyt, G., Boudouf, S., Boucherez, J., Gaymard, F. and Briat, J.-F. 2015. Iron- and ferritin-dependent reactive oxygen species distribution: impact on Arabidopsis root system architecture. Mol. Plant 8: 439-453. https://doi.org/10.1016/j.molp.2014.11.014
- Singh, D., Yadav, D. K., Sinha, S. and Choudhary, G. 2014. Effect of temperature, cultivars, injury of root and inoculums load of Ralstonia solanacearum to cause bacterial wilt of tomato. Arch. Phytopathol. Plant Prot. 47: 1574-1583. https://doi.org/10.1080/03235408.2013.851332
- Souri, M. K., Hatamian, M. and Tesfamariam, T. 2019. Plant growth stage influences heavy metal accumulation in leafy vegetables of garden cress and sweet basil. Chem. Biol. Technol. Agric. 6: 25.
- Swanson, J. K., Yao, J., Tans-Kersten, J. and Allen, C. 2005. Behavior of Ralstonia solanacearum race 3 biovar 2 during latent and active infection of geranium. Phytopathology 95: 136-143. https://doi.org/10.1094/PHYTO-95-0136
- Tan, S., Dong, Y., Liao, H., Huang, J., Song, S., Xu, Y. et al. 2013. Antagonistic bacterium Bacillus amyloliquefaciens induces resistance and controls the bacterial wilt of tomato. Pest Manag. Sci. 69: 1245-1252. https://doi.org/10.1002/ps.3491
- Tano, J., Ripa, M. B., Tondo, M. L., Carrau, A., Petrocelli, S., Rodriguez, M. V. et al. 2021. Light modulates important physiological features of Ralstonia pseudosolanacearum during the colonization of tomato plants. Sci. Rep. 11: 14531.
- Tewari, R. K., Hadacek, F., Sassmann, S. and Lang, I. 2013. Iron deprivation-induced reactive oxygen species generation leads to non-autolytic PCD in Brassica napus leaves. Environ. Exp. Bot. 91: 74-83. https://doi.org/10.1016/j.envexpbot.2013.03.006
- Tripathi, R., Tewari, R., Singh, K. P., Keswani, C., Minkina, T., Srivastava, A. K. et al. 2022. Plant mineral nutrition and disease resistance: a significant linkage for sustainable crop protection. Front. Plant Sci. 13: 883970.
- Turhadi, T., Hamim, H., Ghulamahdi, M. and Miftahudin, M. 2019. Iron toxicity-induced physiological and metabolite profile variations among tolerant and sensitive rice varieties. Plant Signal. Behav. 14: 1682829.
- Wang, L., Pan, T., Gao, X., An, J., Ning, C., Li, S. et al. 2022. Silica nanoparticles activate defense responses by reducing reactive oxygen species under Ralstonia solanacearum infection in tomato plants. NanoImpact 28: 100418.
- Yamazaki, H. and Hoshina, T. 1995. Calcium nutrition affects resistance of tomato seedlings to bacterial wilt. HortScience 30: 91-93. https://doi.org/10.21273/HORTSCI.30.1.91