DOI QR코드

DOI QR Code

Crystal Structure and Biochemical Analysis of a Cytochrome P450 Steroid Hydroxylase (BaCYP106A6) from Bacillus Species

  • Ki-Hwa Kim (Department of Life Science and Biochemical Engineering, Sunmoon University) ;
  • Hackwon Do (Research Unit of Cryogenic Novel Materials, Korea Polar Research Institute) ;
  • Chang Woo Lee (Research Unit of Cryogenic Novel Materials, Korea Polar Research Institute) ;
  • Pradeep Subedi (Department of Life Science and Biochemical Engineering, Sunmoon University) ;
  • Mieyoung Choi (Department of Pharmaceutical Engineering and Biotechnology, Sunmoon University) ;
  • Yewon Nam (Research Unit of Cryogenic Novel Materials, Korea Polar Research Institute) ;
  • Jun Hyuck Lee (Research Unit of Cryogenic Novel Materials, Korea Polar Research Institute) ;
  • Tae-Jin Oh (Department of Life Science and Biochemical Engineering, Sunmoon University)
  • Received : 2022.11.16
  • Accepted : 2022.12.06
  • Published : 2023.03.28

Abstract

Cytochrome P450 (CYP) is a heme-containing enzyme that catalyzes hydroxylation reactions with various substrate molecules. Steroid hydroxylases are particularly useful for effectively introducing hydroxyl groups into a wide range of steroids in the pharmaceutical industry. This study reports a newly identified CYP steroid hydroxylase (BaCYP106A6) from the bacterium Bacillus sp. and characterizes it using an in vitro enzyme assay and structural investigation. Bioconversion assays indicated that BaCYP106A1 catalyzes the hydroxylation of progesterone and androstenedione, whereas no or low conversion was observed with 11β-hydroxysteroids such as cortisol, corticosterone, dexamethasone, and prednisolone. In addition, the crystal structure of BaCYP106A6 was determined at a resolution of 2.8 Å to investigate the configuration of the substrate-binding site and understand substrate preference. This structural characterization and comparison with other bacterial steroid hydroxylase CYPs allowed us to identify a unique Arg295 residue that may serve as the key residue for substrate specificity and regioselectivity in BaCYP106A6. This observation provides valuable background for further protein engineering to design commercially useful CYP steroid hydroxylases with different substrate specificities.

Keywords

Acknowledgement

This research was part of the project titled "Development of potential antibiotic compounds using polar organism resources (20200610, KOPRI Grant PM23030)," funded by the Ministry of Oceans and Fisheries, Korea. This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (NRF-2019R1D1A3A03103903). We thank the Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, Chungbuk, Korea, for NMR analyses.

References

  1. Grossman CJ. 1985. Interactions between the gonadal steroids and the immune system. Science 227: 257-261. https://doi.org/10.1126/science.3871252
  2. Monostory K, Dvorak Z. 2011. Steroid regulation of drug-metabolizing cytochromes P450. Curr. Drug Metab. 12: 154-172. https://doi.org/10.2174/138920011795016854
  3. Carson JA, Manolagas SC. 2015. Effects of sex steroids on bones and muscles: Similarities, parallels, and putative interactions in health and disease. Bone 80: 67-78. https://doi.org/10.1016/j.bone.2015.04.015
  4. Fernandes P, Cruz A, Angelova B, Pinheiro HM, Cabral JMS. 2003. Microbial conversion of steroid compounds: recent developments. Enzyme Microb. Technol. 32: 688-705. https://doi.org/10.1016/S0141-0229(03)00029-2
  5. Donova MV, Egorova OV. 2012. Microbial steroid transformations: Current state and prospects. Appl. Microbiol. Biotechnol. 94: 1423-1447. https://doi.org/10.1007/s00253-012-4078-0
  6. Li Z, Jiang Y, Guengerich XFP, Ma L, Li S, Zhang W. 2020. Engineering cytochrome P450 enzyme systems for biomedical and biotechnological applications. J. Biol. Chem. 295: 833-849. https://doi.org/10.1016/S0021-9258(17)49939-X
  7. Zhang X, Peng Y, Zhao J, Li Q, Yu X, Acevedo-Rocha CG, et al. 2020. Bacterial cytochrome P450-catalyzed regio- and stereoselective steroid hydroxylation enabled by directed evolution and rational design. Bioresour. Bioprocess 7: 2.
  8. Mahato SB, Garai S. 1997. Advances in microbial steroid biotransformation. Steroids 62: 332-345. https://doi.org/10.1016/S0039-128X(96)00251-6
  9. Rudolf JD, Chang CY, Ma M, Shen B. 2017. Cytochromes P450 for natural product biosynthesis in: Streptomyces: sequence, structure, and function. Nat. Prod. Rep. 34: 1141-1172. https://doi.org/10.1039/C7NP00034K
  10. Guengerich FP, Munro AW. 2013. Unusual cytochrome P450 enzymes and reactions. J. Biol. Chem. 288: 17065-17073. https://doi.org/10.1074/jbc.R113.462275
  11. Wei K, Chen H. 2018. Global identification, structural analysis and expression characterization of cytochrome P450 monooxygenase superfamily in rice. BMC Genomics 19: 35. 
  12. Zhang W, Du L, Li F, Zhang X, Qu Z, Han L, et al. 2018. Mechanistic insights into interactions between bacterial class i P450 enzymes and redox partners. ACS Catal. 8: 9992-10003. https://doi.org/10.1021/acscatal.8b02913
  13. Ma B, Wang Q, Ikeda H, Zhang C. 2019. Hydroxylation of steroids by a microbial substrate-promiscuous P450 cytochrome (CYP105D7): key arginine residues for rational design. Appl. Environ. Microbiol. 85: e01530-19.
  14. Suzuki K, Sanga K ichiro, Chikaoka Y, Itagaki E. 1993. Purification and properties of cytochrome P-450 (P-450lun) catalyzing steroid 11β-hydroxylation in Curvularia lunata. Biochim. Biophys. Acta (BBA)/Protein Struct. Mol. 1203: 215-223. https://doi.org/10.1016/0167-4838(93)90086-7
  15. Sakaki T. 2012. Practical application of cytochrome P450. Biol. Pharm. Bull. 35: 844-849. https://doi.org/10.1248/bpb.35.844
  16. Jones G, Strugnell SA, DeLuca HF. 1998. Current understanding of the molecular actions of vitamin D. Physiol. Rev. 78: 1193-1231. https://doi.org/10.1152/physrev.1998.78.4.1193
  17. Hayashi K, Sugimoto H, Shinkyo R, Yamada M, Ikeda S, Ikushiro S, et al. 2008. Structure-based design of a highly active vitamin D hydroxylase from Streptomyces griseolus CYP105A1. Biochemistry 47: 11964-11972. https://doi.org/10.1021/bi801222d
  18. Kawauchi H, Sasaki J, Adachi T, Hanada K, Beppu T, Horinouchi S. 1994. Cloning and nucleotide sequence of a bacterial cytochrome P-450VD25 gene encoding vitamin D-3 25-hydroxylase. BBA - Gene Struct. Expr. 1219: 179-183. https://doi.org/10.1016/0167-4781(94)90266-6
  19. Brill E, Hannemann F, Zapp J, Bruning G, Jauch J, Bernhardt R. 2014. A new cytochrome P450 system from Bacillus megaterium DSM319 for the hydroxylation of 11-keto-β-boswellic acid (KBA). Appl. Microbiol. Biotechnol. 98: 1703-1717. https://doi.org/10.1007/s00253-013-5029-0
  20. Bleif S, Hannemann R, Zapp J, Hartmann D, Jauch J, Bernhardt R. 2012. A new Bacillus megaterium whole-cell catalyst for the hydroxylation of the pentacyclic triterpene 11-keto-β-boswellic acid (KBA) based on a recombinant cytochrome P450 system. Appl. Microbiol. Biotechnol. 93: 1135-1146. https://doi.org/10.1007/s00253-011-3467-0
  21. Schmitz D, Zapp J, Bernhardt R. 2012. Hydroxylation of the triterpenoid dipterocarpol with CYP106A2 from Bacillus megaterium. FEBS J. 279: 1663-1674. https://doi.org/10.1111/j.1742-4658.2012.08503.x
  22. Schmitz D, Zapp J, Bernhardt R. 2014. Steroid conversion with CYP106A2 - production of pharmaceutically interesting DHEA metabolites. Microb. Cell Fact. 13: 81.
  23. Abdulmughni A, Jozwik IK, Brill E, Hannemann F, Thunnissen AMWH, Bernhardt R. 2017. Biochemical and structural characterization of CYP109A2, a vitamin D3 25-hydroxylase from Bacillus megaterium. FEBS J. 284: 3881-3894. https://doi.org/10.1111/febs.14276
  24. Kim KH, Lee CW, Dangi B, Park SH, Park H, Oh TJ, et al. 2017. Crystal structure and functional characterization of a cytochrome P450 (BaCYP106A2) from Bacillus sp. PAMC 23377. J. Microbiol. Biotechnol. 27: 1472-1482. https://doi.org/10.4014/jmb.1706.06013
  25. Omura T, Sato R. 1964. The carbon monoxide-binding pigment of liver microsomes. J. Biol. Chem. 239: 2370-2378. https://doi.org/10.1016/S0021-9258(20)82244-3
  26. Johnston JB, Ouellet H, de Montellano PR. 2010. Functional redundancy of steroid C26-monooxygenase activity in Mycobacterium tuberculosis revealed by biochemical and genetic analyses. J. Biol. Chem. 285: 36352-36360. https://doi.org/10.1074/jbc.M110.161117
  27. Otwinowski MW, Otwinowski ZZ, Minor W. 1997. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276: 307-326. https://doi.org/10.1016/S0076-6879(97)76066-X
  28. Janocha S, Carius Y, Hutter M, Lancaster CRD, Bernhardt R. 2016. Crystal structure of CYP106A2 in substrate-free and substratebound form. ChemBioChem 17: 852-860. https://doi.org/10.1002/cbic.201500524
  29. Emsley P, Lohkamp B, Scott WG, Cowtan K. 2010. Features and development of Coot. Acta Crystallogr. Sect. D Biol. Crystallogr. 66: 486-501. https://doi.org/10.1107/S0907444910007493
  30. Murshudov GN, Skubak P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, et al. 2011. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. Sect. D Biol. Crystallogr. 67: 355-367. https://doi.org/10.1107/S0907444911001314
  31. Liebschner D, Afonine PV, Baker ML, Bunkoczi G, Chen VB, Croll TI, et al. 2019. Macromolecular structure determination using Xrays, neutrons and electrons: Recent developments in Phenix. Acta Crystallogr. Sect. D Struct. Biol. 75: 861-877. https://doi.org/10.1107/S2059798319011471
  32. Williams CJ, Headd JJ, Moriarty NW, Prisant MG, Videau LL, Deis LN, et al. 2018. MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci. 27: 293-315. https://doi.org/10.1002/pro.3330
  33. DeLano WL. 2002. Pymol: An open-source molecular graphics tool. CCP4 Newsl. Protein Crystallogr. 40: 1-8.
  34. Perera R, Sono M, Sigman JA, Pfister TD, Lut Y, Dawson JH. 2003. Neutral thiol as a proximal ligand to ferrous heme iron: Implications for heme proteins that lose cysteine thiolate ligation on reduction. Proc. Natl. Acad. Sci. USA 100: 3641-3646. https://doi.org/10.1073/pnas.0737142100
  35. McLean KJ, Warman AJ, Seward HE, Marshall KR, Girvan HM, Cheesman MR, et al. 2006. Biophysical characterization of the sterol demethylase P450 from Mycobacterium tuberculosis, its cognate ferredoxin, and their interactions. Biochemistry 45: 8427-8443. https://doi.org/10.1021/bi0601609
  36. Zhong F, Lisi GP, Collins DP, Dawson JH, Pletneva EV. 2014. Redox-dependent stability, protonation, and reactivity of cysteinebound heme proteins. Proc. Natl. Acad. Sci. USA 111: E306-E315.
  37. Zehentgruber D, Hannemann F, Bleif S, Bernhardt R, Lutz S. 2010. Towards preparative scale steroid hydroxylation with cytochrome P450 monooxygenase CYP106A2. ChemBioChem. 11: 713-721. https://doi.org/10.1002/cbic.200900706
  38. Kiss FM, Schmitz D, Zapp J, Dier TKF, Volmer DA, Bernhardt R. 2015. Comparison of CYP106A1 and CYP106A2 from Bacillus megaterium - identification of a novel 11-oxidase activity. Appl. Microbiol. Biotechnol. 99: 8495-8514 https://doi.org/10.1007/s00253-015-6563-8
  39. Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, et al. 2018. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46: W296-W303. https://doi.org/10.1093/nar/gky427
  40. Krieger E, Joo K, Lee J, Lee J, Raman S, Thompson J, Tyka M, et al. 2009. Improving physical realism, stereochemistry, and side-chain accuracy in homology modeling: four approaches that performed well in CASP8. Proteins 77: 114-122. https://doi.org/10.1002/prot.22570
  41. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, et al. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947-2948. https://doi.org/10.1093/bioinformatics/btm404
  42. Jurrus E, Engel D, Star K, Monson K, Brandi J, Felberg LE, et al. 2018. Improvements to the APBS biomolecular solvation software suite. Protein Sci. 27: 112-128. https://doi.org/10.1002/pro.3280
  43. Jozwik IK, Kiss FM, Gricman L, Abdulmughni A, Brill E, Zapp J, et al. 2016. Structural basis of steroid binding and oxidation by the cytochrome P450 CYP109E1 from Bacillus megaterium. FEBS J. 283: 4128-4148. https://doi.org/10.1111/febs.13911
  44. Gober JG, Ghodge S V, Bogart JW, Wever WJ, Watkins RR, Brustad EM, et al. 2017. P450-mediated non-natural cyclopropanation of dehydroalanine-containing thiopeptides. ACS Chem. Biol. 12: 1726-1731. https://doi.org/10.1021/acschembio.7b00358
  45. Zhang A, Zhang T, Hall EA, Hutchinson S, Cryle MJ, Wong LL, et al. 2015. The crystal structure of the versatile cytochrome P450 enzyme CYP109B1 from Bacillus subtilis. Mol. Biosyst. 11: 869-881. https://doi.org/10.1039/C4MB00665H
  46. Li S, Tietz DR, Rutaganira FU, Kells PM, Anzai Y, Kato F, et al. 2012. Substrate recognition by the multifunctional cytochrome P450 MycG in mycinamicin hydroxylation and epoxidation reactions. J. Biol. Chem. 287: 37880-37890. https://doi.org/10.1074/jbc.M112.410340
  47. Yasutake Y, Imoto N, Fujii Y, Fujii T, Arisawa A, Tamura T. 2007. Crystal structure of cytochrome P450 MoxA from Nonomuraea recticatena (CYP105). Biochem. Biophys. Res. Commun. 361: 876-882. https://doi.org/10.1016/j.bbrc.2007.07.062
  48. Parisi G, Freda I, Exertier C, Cecchetti C, Gugole E, Cerutti G, et al. 2020. Dissecting the cytochrome p450 olep substrate specificity: evidence for a preferential substrate. Biomolecules 10: 1411.