DOI QR코드

DOI QR Code

Overexpression of S-Adenosylmethionine Synthetase in Recombinant Chlamydomonas for Enhanced Lipid Production

  • Jeong Hyeon Kim (Department of Biotechnology and Bioengineering, Chonnam National University) ;
  • Joon Woo Ahn (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Eun-Jeong Park (Aquatic Plant Variety Center, National Institute of Fisheries Science) ;
  • Jong-il Choi (Department of Biotechnology and Bioengineering, Chonnam National University)
  • Received : 2022.12.07
  • Accepted : 2023.01.09
  • Published : 2023.03.28

Abstract

Microalgae are attracting much attention as promising, eco-friendly producers of bioenergy due to their fast growth, absorption of carbon dioxide from the atmosphere, and production capacity in wastewater and salt water. However, microalgae can only accumulate large quantities of lipid in abiotic stress, which reduces productivity by decreasing cell growth. In this study, the strategy was investigated to increase cell viability and lipid production by overexpressing S-adenosylmethionine (SAM) synthetase (SAMS) in the microalga Chlamydomonas reinhardtii. SAM is a substance that plays an important role in various intracellular biochemical reactions, such as cell proliferation and stress response, and the overexpression of SAMS could allow cells to ithstand the abiotic stress and increase productivity. Compared to wild-type C. reinhardtii, recombinant cells overexpressing SAMS grew 1.56-fold faster and produced 1.51-fold more lipids in a nitrogen-depleted medium. Furthermore, under saline-stress conditions, the survival rate and lipid accumulation were 1.56 and 2.04 times higher in the SAMS-overexpressing strain, respectively. These results suggest that the overexpression of SAMS in recombinant C. reinhardtii has high potential in the industrial-scale production of biofuels and various other high-value-added materials.

Keywords

Acknowledgement

This work was supported by a National Research Foundation of Korea (NRF) and Korea Foundation for Women In Science, Engineering and Technology (WISET) (WISET-2022-083) grant funded by the Korean government (MSIT) (NRF-2018R1D1A1B07049359), and the research program of the Korea Atomic Energy Research Institute (KAERI).

References

  1. Oh H, Hong I, Oh I. 2021. South Korea? 2050 Carbon neutrality policy. East Asian Policy 13: 33-46. https://doi.org/10.1142/S1793930521000039
  2. Rodolfi L, Chini Zittelli G, Bassi N, Padovani G, Biondi N, Bonini G, et al. 2009. Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol.Bbioeng. 102: 100-112. https://doi.org/10.1002/bit.22033
  3. Kim J-T, Ahn D-G, Park J-R, Park J-W, Jeong S-H. 2011. Recent trends of the development of photobioreactors to cultivate microalgae. J. Korean Soc. Precision Eng. 28: 125-132.
  4. Work VH, Radakovits R, Jinkerson RE, Meuser JE, Elliott LG, Vinyard DJ, et al. 2010. Increased lipid accumulation in the Chlamydomonas reinhardtii sta7-10 starchless isoamylase mutant and increased carbohydrate synthesis in complemented strains. Eukaryot. Cell 9: 1251-1261. https://doi.org/10.1128/EC.00075-10
  5. Paliwal C, Mitra M, Bhayani K, Bharadwaj SV, Ghosh T, Dubey S, et al. 2017. Abiotic stresses as tools for metabolites in microalgae. Bioresour. Technol. 244: 1216-1226. https://doi.org/10.1016/j.biortech.2017.05.058
  6. Colina F, Amaral J, Carbo M, Pinto G, Soares A, Canal MJ, et al. 2019. Genome-wide identification and characterization of CKIN/SnRK gene family in Chlamydomonas reinhardtii. Sci. Rep. 9: 350.
  7. Sasso S, Stibor H, Mittag M, Grossman AR. 2018. The natural history of model organisms: From molecular manipulation of domesticated Chlamydomonas reinhardtii to survival in nature. Elife 7: e39233.
  8. Mayfield SP, Franklin SE. 2005. Expression of human antibodies in eukaryotic micro-algae. Vaccine 23: 1828-1832. https://doi.org/10.1016/j.vaccine.2004.11.013
  9. Park JJ, Wang H, Gargouri M, Deshpande RR, Skepper JN, Holguin FO, et al. 2015. The response of Chlamydomonas reinhardtii to nitrogen deprivation: a systems biology analysis. Plant J. 81: 611-624. https://doi.org/10.1111/tpj.12747
  10. Baek K, Kim DH, Jeong J, Sim SJ, Melis A, Kim J-S, et al. 2016. DNA-free two-gene knockout in Chlamydomonas reinhardtii via CRISPR-Cas9 ribonucleoproteins. Sci. Rep. 6: 30620.
  11. Lin Y-H, Pan K-Y, Hung C-H, Huang H-E, Chen C-L, Feng T-Y, et al. 2013. Overexpression of ferredoxin, PETF, enhances tolerance to heat stress in Chlamydomonas reinhardtii. Int. J. Mol. Sci. 14: 20913-20929. https://doi.org/10.3390/ijms141020913
  12. Kim J, Lee S, Baek K, Jin E. 2020. Site-specific gene knock-out and on-site heterologous gene overexpression in Chlamydomonas reinhardtii via a CRISPR-Cas9-mediated knock-in method. Front. Plant Sci. 11: 306.
  13. Park S-J, Ahn JW, Choi J-I. 2022. Improved tolerance of recombinant Chlamydomonas rainhardtii with putative 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase from Pyropia yezoensis to nitrogen starvation. J. Microbiol. 60: 63-69. https://doi.org/10.1007/s12275-022-1491-7
  14. Lu SC. 2000. S-adenosylmethionine. Int. J. Biochem. Cell Biol. 32: 391-395. https://doi.org/10.1016/S1357-2725(99)00139-9
  15. Yoon S, Lee W, Kim M, Kim TD, Ryu Y. 2012. Structural and functional characterization of S-adenosylmethionine (SAM) synthetase from Pichia ciferrii. Bioproc. Biosyst. Eng. 35: 173-181. https://doi.org/10.1007/s00449-011-0640-x
  16. Hayashi T, Teruya T, Chaleckis R, Morigasaki S, Yanagida M. 2018. S-adenosylmethionine synthetase is required for cell growth, maintenance of G0 phase, and termination of quiescence in fission yeast. Iscience 5: 38-51. https://doi.org/10.1016/j.isci.2018.06.011
  17. Ma C, Wang Y, Gu D, Nan J, Chen S, Li H. 2017. Overexpression of S-adenosyl-L-methionine synthetase 2 from sugar beet M14 increased Arabidopsis tolerance to salt and oxidative stress. Int. J. Mol. Sci. 18: 847.
  18. Han JW, Hong HD, Han J-W, Lim H, Lee G-S, Hwang H-J. 2016. Characterization of S-adenosylmethionine synthetase gene from red algae, Pyropia tenera. Plant Breeding Biotechnol. 4: 475-483. https://doi.org/10.9787/PBB.2016.4.4.475
  19. Roy M, Wu R. 2002. Overexpression of S-adenosylmethionine decarboxylase gene in rice increases polyamine level and enhances sodium chloride-stress tolerance. Plant Sci. 163: 987-992. https://doi.org/10.1016/S0168-9452(02)00272-8
  20. Hazarika P, Rajam MV. 2011. Biotic and abiotic stress tolerance in transgenic tomatoes by constitutive expression of S-adenosylmethionine decarboxylase gene. Physiol. Mol. Biol. Plants 17: 115-128. https://doi.org/10.1007/s12298-011-0053-y
  21. Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, et al. 2007. The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318: 245-250. https://doi.org/10.1126/science.1143609
  22. Kim E, Park HS, Jung Y, Choi DW, Jeong WJ, Park HS, et al. 2011. IDENTIFICATION OF THE HIGH-TEMPERATURE RESPONSE GENES FROM PORPHYRA SERIATA (RHODOPHYTA) EXPRESSION SEQUENCE TAGS AND ENHANCEMENT OF HEAT TOLERANCE OF CHLAMYDOMONAS (CHLOROPHYTA) BY EXPRESSION OF THE PORPHYRA HTR2 GENE 1. J. Phycol. 47: 821-828. https://doi.org/10.1111/j.1529-8817.2011.01008.x
  23. Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-∆∆CT method. Mthods 25: 402-408. https://doi.org/10.1006/meth.2001.1262
  24. Kim D-J, Huh J-H, Yang Y-Y, Kang C-M, Lee I-H, Hyun C-G, et al. 2003. Accumulation of S-adenosyl-L-methionine enhances production of actinorhodin but inhibits sporulation in Streptomyces lividans TK23. J. Bacteriol. 185: 592-600. https://doi.org/10.1128/JB.185.2.592-600.2003
  25. Birsan C, Litescu SC, Radu GL. 2010. A novel HPLC-PDA-MS method for S-adenosylmethionine and S-adenosylhomocysteine routine analysis. Anal. Lett. 43: 793-803. https://doi.org/10.1080/00032710903486385
  26. Cirulis JT, Strasser BC, Scott JA, Ross GM. 2012. Optimization of staining conditions for microalgae with three lipophilic dyes to reduce precipitation and fluorescence variability. Cytometry A 81: 618-626. https://doi.org/10.1002/cyto.a.22066
  27. Sartory D, Grobbelaar J. 1984. Extraction of chlorophyll a from freshwater phytoplankton for spectrophotometric analysis. Hydrobiologia 114: 177-187. https://doi.org/10.1007/BF00031869
  28. Greenbaum D, Colangelo C, Williams K, Gerstein M. 2003. Comparing protein abundance and mRNA expression levels on a genomic scale. Genome Biol. 4: 117.
  29. Lin HY, Lin HJ. 2018. Polyamines in microalgae: Something borrowed, something new. Mar. Drugs 17: 1.
  30. Eloranta TO, Raina AM. 1977. S-adenosylmethionine metabolism and its relation to polyamine synthesis in rat liver. Effect of nutritional state, adrenal function, some drugs and partial hepatectomy. Biochem. J. 168: 179-185. https://doi.org/10.1042/bj1680179
  31. Gevrekci AO. 2017. The roles of polyamines in microorganisms. World J. Microbiol. Biotechnol. 33: 204.
  32. Rezayian M, Niknam V, Ebrahimzadeh H. 2019. Oxidative damage and antioxidative system in algae. Toxicol. Rrep. 6: 1309-1313. https://doi.org/10.1016/j.toxrep.2019.10.001
  33. Sachdev S, Ansari SA, Ansari MI, Fujita M, Hasanuzzaman M. 2021. Abiotic stress and reactive oxygen species: generation, signaling, and defense mechanisms. Antioxidants (Basel) 10: 277.
  34. Liu JH, Wang W, Wu H, Gong X, Moriguchi T. 2015. Polyamines function in stress tolerance: from synthesis to regulation. Front. Plant Sci. 6: 827.
  35. Li-Beisson Y, Beisson F, Riekhof W. 2015. Metabolism of acyl-lipids in Chlamydomonas reinhardtii. Plant J. 82: 504-522. https://doi.org/10.1111/tpj.12787
  36. Wase N, Black PN, Stanley BA, DiRusso CC. 2014. Integrated quantitative analysis of nitrogen stress response in Chlamydomonas reinhardtii using metabolite and protein profiling. J. Proteome Res. 13: 1373-1396. https://doi.org/10.1021/pr400952z
  37. Lee B-S, Koo KM, Ryu J, Hong MJ, Kim SH, Kwon S-J, et al. 2020. Overexpression of fructose-1, 6-bisphosphate aldolase 1 enhances accumulation of fatty acids in Chlamydomonas reinhardtii. Algal Res. 47: 101825.