DOI QR코드

DOI QR Code

Mechanistic modelling for African swine fever transmission in the Republic of Korea

  • Eutteum Kim (College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University) ;
  • Jun-Sik Lim (IHAP, Universite de Toulouse, INRAE, ENVT) ;
  • Son-Il Pak (College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University)
  • Received : 2022.10.26
  • Accepted : 2023.01.04
  • Published : 2023.03.31

Abstract

Under the current African swine fever (ASF) epidemic situation, a science-based ASF-control strategy is required. An ASF transmission mechanistic model can be used to understand the disease transmission dynamics among susceptible epidemiological units and evaluate the effectiveness of an ASF-control strategy by simulating disease spread results with different control options. The force of infection, which is the probability that a susceptible epidemiological unit becomes infected, could be estimated by applying an ASF transmission mechanistic model. The government needs to plan an ASF-control strategy based on an ASF transmission mechanistic model.

Keywords

Acknowledgement

The authors thank to Dr. Ryu Pan-Dong for the additional supervision of manuscript.

References

  1. Kim YJ, Park B, Kang HE. Control measures to African swine fever outbreak: active response in South Korea, preparation for the future, and cooperation. J Vet Sci. 2021;22(1):e13. 
  2. Lim JS, Vergne T, Pak SI, Kim E. Modelling the spatial distribution of ASF-positive wild boar carcasses in South Korea using 2019-2020 national surveillance data. Animals (Basel). 2021;11(5):1208. 
  3. Hayes BH, Andraud M, Salazar LG, Rose N, Vergne T. Mechanistic modelling of African swine fever: a systematic review. Prev Vet Med. 2021;191:105358. 
  4. Kim E, Pak SI. Species distribution modeling for wild boar (Sus scropa) in the Republic of Korea using MODIS data. J Prev Vet Med. 2020;44(2):89-95.  https://doi.org/10.13041/jpvm.2020.44.2.89
  5. Hidano A, Enticott G, Christley RM, Gates MC. Modeling dynamic human behavioral changes in animal disease models: challenges and opportunities for addressing bias. Front Vet Sci. 2018;5:137. 
  6. Yoo DS, Kim Y, Lee ES, Lim JS, Hong SK, Lee IS, et al. Transmission dynamics of African swine fever virus, South Korea, 2019. Emerg Infect Dis. 2021;27(7):1909-1918.  https://doi.org/10.3201/eid2707.204230
  7. Salines M, Andraud M, Rose N. Pig movements in France: designing network models fitting the transmission route of pathogens. PLoS One. 2017;12(10):e0185858. 
  8. Walker PG, Cauchemez S, Metras R, Dung H, Pfeiffer D, Ghani AC. A Bayesian approach to quantifying the effects of mass poultry vaccination upon the spatial and temporal dynamics of H5N1 in Northern Vietnam. PLOS Comput Biol. 2010;6(2):e1000683. 
  9. Hu B, Gonzales JL, Gubbins S. Bayesian inference of epidemiological parameters from transmission experiments. Sci Rep. 2017;7(1):16774. 
  10. Costard S, Mur L, Lubroth J, Sanchez-Vizcaino JM, Pfeiffer DU. Epidemiology of African swine fever virus. Virus Res. 2013;173(1):191-197. https://doi.org/10.1016/j.virusres.2012.10.030