DOI QR코드

DOI QR Code

Marginal bone loss between internal- and external- abutment connection type implants placed in the first molar area

제1대구치 위치에 식립된 단일 임플란트의 지대주 연결 유형에 따른 임플란트 주위골 흡수

  • Seok-Hyun Lee (Dental Research Institute, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea) ;
  • Eun-Woo Lee (Department of Periodontology, Dental Research Institute, School of Dentistry, Chonnam National University) ;
  • Ha-Na Jung (Department of Dentistry, Chonnam National University Hwasun Hospital) ;
  • Ok-Su Kim (Department of Periodontology, Dental Research Institute, School of Dentistry, Chonnam National University)
  • 이석현 (전남대학교 치의학전문대학원) ;
  • 이은우 (전남대학교 치의학전문대학원 치주과학교실, 치의학연구소) ;
  • 정하나 (화순전남대학교병원 치과) ;
  • 김옥수 (전남대학교 치의학전문대학원 치주과학교실, 치의학연구소)
  • Received : 2023.02.25
  • Accepted : 2023.03.06
  • Published : 2023.03.31

Abstract

Purpose: The purpose of this study was to investigate the effect of implant connection type on marginal bone loss (MBL) and to analyze the factors that affect MBL. This study focuses on single implants planted in the upper and lower first molar area. Materials and Methods: A total of 87 implants from 68 patients were tracked for a period over 5 years. There were 57 external connection type (EC) implants and 30 internal connection type (IC) implants in 38 males and 30 females. The MBL and EA were measured from intraoral radiograph images taken after 5 years at most. Results: Significant difference in MBL between EC and IC type was observed in patients without GBR or diabetes. Patients without GBR exhibited an MBL of -0.065 ± 0.859 mm in EC type and -0.627 ± 0.639 mm in IC type (P = 0.025). Using multiple regression analysis, a statistically significant negative correlation was observed between MBL and conditions including implant-abutment connection type (β = -0.303), diabetes (β = -0.113), emergence angle > 30° (β = -0.234), and age (β = -0.776). Conclusion: Within this results, IC type implants had less MBL than EC type, and implant prosthesis with emergence angle over 30° showed greater MBL. To minimize the MBL of the implant and ensure implant stability, careful consideration should be given to the EA of implant prosthesis and its connection type.

목적: 이번 연구는 상·하악 제1대구치 부위에 식립 된 단일 임플란트를 통해 임플란트-지대주 연결 유형이 임플란트의 변연골 소실 (MBL)에 영향을 주는지, 그리고 MBL에 영향을 끼치는 요인들을 알아보기 위해 분석하였다. 연구 재료 및 방법: 5년 이상의 추적 기간 동안, 상·하악 제1대구치 부위에 단일 임플란트를 식립하여 수복한 68명의 환자(남: 38명, 여: 30명)의 87 임플란트(external connection type (EC) 임플란트: 57개, internal connection type (IC) 임플란트: 30개)를 대상으로 추적 조사하였다. 최대 5년 후의 구내 방사선 영상에서 MBL과 보철물의 출현 각도(EA)를 측정하였다. 60 - 79세에 해당하는 환자의 비율이 52.9%로 가장 높았고 상악 구치부에 임플란트가 가장 많이 식립되었다. 결과: GBR을 하지 않은 경우 EC (-0.065 ± 0.859 mm)와 IC (-0.627 ± 0.639 mm)에서 유의한 차이가 있었고, 또한 당뇨병이 없는 환자들 사이에서 EC (-0.131 ± 1.002 mm)와 IC (-0.792 ± 0.762 mm)에서 유의한 차이가 존재하였다. 임플란트 매식체의 직경, 길이, 보철물 연결 방법, 임플란트 제조업체, 보철물의 emergence angle (EA)로 구분하였을 때 각군 간에 유의미한 차이가 없었다. 다중회귀분석을 이용하여 MBL에 영향을 주는 요인분석 결과 회귀계수의 유의성 검증에서 임플란트-지대주 체결 방식(β = -0.303), 당뇨병의 유무(β = -0.113), EA의 차이(β = -0.234), 나이(β = -0.776)에서 MBL에 통계학적으로 유의한 음의 상관관계를 보였다. 결론: IC가 EC보다 GBR을 하지 않은 경우와 당뇨병이 없는 환자들 사이에서 MBL이 작다는 것을 알 수 있었다. 또한 보철물의 EA가 30°보다 큰 보철물의 형태를 가진 임플란트가 30°보다 작은 보철물의 형태를 가진 임플란트 보다 MBL이 컸으며 나이가 많을수록 MBL이 크다는 것을 알 수 있었다. 임플란트의 MBL을 최소화하고 임플란트 안정성을 확보하기 위해서 임플란트 보철물의 EA와 임플란트-지대주 연결 유형을 세심하게 고려해야 할 것이다.

Keywords

Acknowledgement

The authors report no conflicts of interest related to this study. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2019R1A5A2027521).

References

  1. Branemark Pl, Adell R, Breine U, Hansson BO, Lindstrom J, Ohlsson A. Intra-osseous anchorage of dental prostheses. I. Experimental studies. Scand J Plast Reconstr Surg 1969;3:81-100.  https://doi.org/10.3109/02844316909036699
  2. Esposito M, Hirsch JM, Lekholm U, Thomsen P. Biological factors contributing to failures of osseointergrated oral implants. (II). Etiopathogenesis. Eur J Oral Sci 1998;106:721-64.  https://doi.org/10.1046/j.0909-8836..t01-6-.x
  3. Aparna IN, Dhanasekar B, Lingeshwar D, Gupta L. Implant crest module: a review of biomechanical considerations. Indian J Dent Res 2012;23:257-63.  https://doi.org/10.4103/0970-9290.100437
  4. Chou CT, Morris HF, Ochi S, Walker L, DesRosiers D. AICRG, Part II: Crestal bone loss associated with the Ankylos implant: Loading to 36 months. J Oral Implantol 2004;30:134-43.  https://doi.org/10.1563/1548-1336(2004)30<134:APICBL>2.0.CO;2
  5. Adell R, Lekholm U, Rockler B, Branemark PI. A 15-year study of osseointegrated implants in the treatment of the edentulous jaw. Int J Oral Surg 1981;10:387-416.  https://doi.org/10.1016/S0300-9785(81)80077-4
  6. Goiato MC, Pellizzer EP, da Silva EV, Bonatto LR, dos Santos DM. Is the internal connection more efficient than external connection in mechanical, biological, and esthetical point of views? A systematic review. Oral Maxillofac Surg 2015;19:229-42.  https://doi.org/10.1007/s10006-015-0494-5
  7. Albrektsson T, Zarb G, Worthington P, Eriksson AR. The long-term efficacy of currently used dental implants: a review and proposed criteria of success. Int J Oral Maxillofac Implants 1986;1:11-25. 
  8. Romeo E, Lops D, Margutti E, Ghisolfi M, Chiapasco M, Vogel G. Long-term survival and success of oral implants in the treatment of full and partial arches: a 7-year prospective study with the ITI dental implant system. Int J Oral Maxillofac Implants 2004;19:247-59. 
  9. Laine P, Salo A, Kontio R, Ylijoki S, Lindqvist C, Suuronen R. Failed dental implants - clinical, radiological and bacteriological findings in 17 patients. J Craniomaxillofac Surg 2005;33:212-7.  https://doi.org/10.1016/j.jcms.2004.12.004
  10. Behneke A, Behneke N, d'Hoedt B. A 5-year longitudinal study of the clinical effectiveness of ITI solid-screw implants in the treatment of mandibular edentulism. Int J Oral Maxillofac Implants 2002;17:799-810. 
  11. Atieh MA, Ibrahim HM, Atieh AH. Platform switching for marginal bone preservation around dental implants: a systematic review and meta-analysis. J Periodontol 2010;81:1350-66.  https://doi.org/10.1902/jop.2010.100232
  12. Jones AA, Cochran DL. Consequences of implant design. Dent Clin North Am 2006;50:339-60.  https://doi.org/10.1016/j.cden.2006.03.008
  13. Pozzi A, Agliardi E, Tallarico M, Barlattani A. Clinical and radiological outcomes of two implants with different prosthetic interfaces and neck configurations: randomized, controlled, split-mouth clinical trial. Clin Implant Dent Relat Res 2014;16:96-106.  https://doi.org/10.1111/j.1708-8208.2012.00465.x
  14. Calvo-Guirado JL, Gomez-Moreno G, Aguilar-Salvatierra A, Guardia J, Delgado-Ruiz RA, Romanos GE. Marginal bone loss evaluation around immediate non-occlusal microthreaded implants placed in fresh extraction sockets in the maxilla: a 3-year study. Clin Oral Implants Res 2015;26:761-7.  https://doi.org/10.1111/clr.12336
  15. Canullo L, Rosa JC, Pinto VS, Francischone CE, Gotz W. Inward-inclined implant platform for the amplified platform-switching concept: 18-month follow-up report of a prospective randomized matched-pair controlled trial. Int J Oral Maxillofac Implants 2012;27:927-34. 
  16. Koo KT, Lee EJ, Kim JY, Seol YJ, Han JS, Kim TI, Lee YM, Ku Y, Wikesjo UM, Rhyu IC. The effect of internal versus external abutment connection modes on crestal bone changes around dental implants: a radiographic analysis. J Periodontol 2012;83:1104-9.  https://doi.org/10.1902/jop.2011.110456
  17. Schwarz F, Alcoforado G, Nelson K, Schaer A, Taylor T, Beuer F, Strietzel FP. Impact of implantabutment connection, positioning of the machined collar/microgap, and platform switching on crestal bone level changes. Camlog Foundation Consensus Report. Clin Oral Implants Res 2014;25:1301-3.  https://doi.org/10.1111/clr.12269
  18. Pieri F, Aldini NN, Marchetti C, Corinaldesi G. Influence of implant-abutment interface design on bone and soft tissue levels around immediately placed and restored single-tooth implants: a randomized controlled clinical trial. Int J Oral Maxillofac Implants 2011;26:169-78. 
  19. Shin YK, Han CH, Heo SJ, Kim S, Chun HJ. Radiographic evaluation of marginal bone level around implants with different neck designs after 1 year. Int J Oral Maxillofac Implants 2006;21:789-94. 
  20. Quirynen M, Naert I, van Steenberghe D. Fixture design and overload influence marginal bone loss and fixture success in the Branemark system. Clin Oral Implants Res 1992;3:104-11.  https://doi.org/10.1034/j.1600-0501.1992.030302.x
  21. Becker W, Becker BE. Replacement of maxillary and mandibular molars with single endosseous implant restorations: a retrospective study. J Prosthet Dent 1995;74:51-5.  https://doi.org/10.1016/S0022-3913(05)80229-X
  22. Maeda Y, Satoh T, Sogo M. In vitro differences of stress concentrations for internal and external hex implant-abutment connections: a short communication. J Oral Rehabil 2006;33:75-8.  https://doi.org/10.1111/j.1365-2842.2006.01545.x
  23. Laurell L, Lundgren D. Marginal bone level changes at dental implants after 5 years in function: a meta-analysis. Clin Implant Dent Relat Res 2011;13:19-28.  https://doi.org/10.1111/j.1708-8208.2009.00182.x
  24. Pozzi A, Tallarico M, Moy PK. Three-year post-loading results of a randomized, controlled, splitmouth trial comparing implants with different prosthetic interfaces and design in partially posterior edentulous mandibles. Eur J Oral Implantol 2014;7:47-61. 
  25. Penarrocha-Diago MA, Flichy-Fernandez AJ, Alonso-Gonzalez R, Penarrocha-Oltra D, Balaguer-Martinez J, Penarrocha-Diago M. Influence of implant neck design and implant-abutment connection type on peri-implant health. Radiological study. Clin Oral Implants Res 2013;24:1192-200.  https://doi.org/10.1111/j.1600-0501.2012.02562.x
  26. Crespi R, Cappare P, Gherlone E. Radiographic evaluation of marginal bone levels around platform-switched and non-platform-switched implants used in an immediate loading protocol. Int J Oral Maxillofac Implants 2009;24:920-6. 
  27. Lin MI, Shen YW, Huang HL, Hsu JT, Fuh LJ. A retrospective study of implant-abutment connections on crestal bone level. J Dent Res 2013;92 Suppl 12:S202-7.  https://doi.org/10.1177/0022034513510322
  28. Kielbassa AM, Martinez-de Fuentes R, Goldstein M, Arnhart C, Barlattani A, Jackowski J, Knauf M, Lorenzoni M, Maiorana C, Mericske-Stern R, Rompen E, Sanz M. Randomized controlled trial comparing a variable-thread novel tapered and a standard tapered implant: interim one-year results. J Prosthet Dent 2009;101:293-305.  https://doi.org/10.1016/S0022-3913(09)60060-3
  29. Fickl S, Zuhr O, Stein JM, Hurzeler MB. Periimplant bone level around implants with platform-switched abutments. Int J Oral Maxillofac Implants 2010;25:577-81. 
  30. Zechner W, Watzak G, Gahleitner A, Busenlechner D, Tepper G, Watzek G. Rotational panoramic versus intraoral rectangular radiographs for evalutation of peri-implant bone loss in the anterior atrophic mandible. Int J Oral Maxillofac Implants 2003;18:873-8. 
  31. Kullman L, Al-Asfour A, Zetterqvist L, Andersson L. Comparison of radiographic bone height assessments in panoramic and intraoral radiographs of implant patients. Int J Oral Maxillofac Implants 2007;22:96-100. 
  32. Kim DH, Kim HJ, Kim ST, Koo KT, Kim TI, Seol YJ, Lee YM, Ku Y, Rhyu IC. Comparison of marginal bone loss between internal- and external- connection dental implants in posterior areas without periodontal or peri-implant disease. J Periodontal Implant Sci 2018;48:103-13.  https://doi.org/10.5051/jpis.2018.48.2.103
  33. Liu Z, Fu C, Wang W, Xu B. Prevalence of chronic complications of type 2 diabetes mellitus in outpatients - a cross-sectional hospital based survey in urban China. Health Qual Life Outcomes 2010;8:62. 
  34. Wu YY, Xiao E, Graves DT. Diabetes mellitus related bone metabolism and periodontal disease. Int J Oral Sci 2015;7:63-72.  https://doi.org/10.1038/ijos.2015.2
  35. Iacopino AM. Periodontitis and diabetes interrelationships: role of inflammation. Ann Periodontol 2001;6:125-37.  https://doi.org/10.1902/annals.2001.6.1.125
  36. Souto-Maior JR, Pellizzer EP, de Luna Gomes JM, Dds CAAL, Dds JFSJ, Vasconcelos BCDE, de Moraes SLD. Influence of diabetes on the survival rate and marginal bone loss of dental implants: An overview of systematic reviews. J Oral Implantol 2019;45:334-40.  https://doi.org/10.1563/aaid-joi-D-19-00087
  37. Negri M, Galli C, Smerieri A, Macaluso GM, Manfredi E, Ghiacci G, Toffoli A, Bonanini M, Lumetti S. The effect of age, gender, and insertion site on marginal bone loss around endosseous implants: results from a 3-year trial with premium implant system. Biomed Res Int 2014;2014:369051. 
  38. Katafuchi M, Weinstein BF, Leroux BG, Chen YW, Daubert DM. Restoration contour is a risk indicator for peri-implantitis: A cross-sectional radiographic analysis. J Clin Periodontol 2018;45:225-32.  https://doi.org/10.1111/jcpe.12829
  39. Yi Y, Koo KT, Schwarz F, Amara HB, Heo SJ. Association of prosthetic features and peri-implantitis: A cross-sectional study. J Clin Periodontol 2020;47:392-403.  https://doi.org/10.1111/jcpe.13251
  40. Inoue M, Nakano T, Shimomoto T, Kabata D, Shintani A, Yatani H. Multivariate analysis of the influence of prosthodontic factors on peri-implant bleeding index and marginal bone level in a molar site: A cross-sectional study. Clin Implant Dent Relat Res 2022;22:713-22.  https://doi.org/10.1111/cid.12953
  41. Tallarico M, Canullo L, Caneva M, Ozcan M. Microbial colonization at the implant-abutment interface and its possible influence on periimplantitis: A systematic review and meta-analysis. J Prosthodont Res 2017;61:233-41. https://doi.org/10.1016/j.jpor.2017.03.001