DOI QR코드

DOI QR Code

Comparative genomics of Viola selkirkii and V. ulleungdoensis (Violaceae)

  • Ah-reum GO (Department of Biological Sciences, Kangwon National University) ;
  • Ki-Oug YOO (Department of Biological Sciences, Kangwon National University)
  • Received : 2023.02.03
  • Accepted : 2023.03.23
  • Published : 2023.03.31

Abstract

Chloroplast genomes of two morphologically similar species, Viola selkirkii and V. ulleungdoensis, were compared. For this comparison, three individuals of V. selkirkii from Ulleung-do Island (UE), Jeju-do Island (JJ), and Hwacheon-gun (HC) and one of V. ulleungdoensis from UE were collected. According to chloroplast genome sequencing of V. selkirkii and V. ulleungdoensis, their genomes were found to contain 156,774-157,454 and 157,575 bp, respectively, and a total of 111 genes. In the comparison of the three V. selkirkii individuals, V. selkirkii obtained in UE was distinguished from those of the other regions of HC and JJ, and in the comparison of the three V. selkirkii individuals and one V. ulleungdoensis individual, V. selkirkii obtained from UE and V. ulleungdoensis were distinguished from the species in the other regions. In addition, a phylogenetic analysis revealed that 32 taxa of Viola formed a monophyletic group (bootstrap support [BS] = 100). The four Viola individuals used in this study (three V. selkirkii and one V. ulleungdoensis) formed a monophyletic group (BS = 100), which was further divided into two subclades. One subclade comprised V. selkirkii found in UE and V. ulleungdoensis, whereas the other subclade comprised V. selkirkii found in HC and JJ. These results support the view of prior studies that V. selkirkii growing in UE and V. ulleungdoensis are the same species.

Keywords

Acknowledgement

This study was supported by the National Research Foundation of Korea [Grant Number 2019R1F1A1059552].

References

  1. Chan, P. P. and T. M. Lowe. 2019. tRNAscan-SE: Searching for tRNA genes in genomic sequences. Methods in Molecular Biology 1962: 1-14.  https://doi.org/10.1007/978-1-4939-9173-0_1
  2. Chao, D.-L., X.-J. Zhang, S.-Q. Xie, S.-J. Fan and X.-J. Qu. 2022. Application of chloroplast genome in the identification of traditional Chinese medicine Viola philippica. BMC Genomics 23: 540. 
  3. Cheon, K.-S., D.-K. Kim, K.-A. Kim and K.-O. Yoo. 2020. The complete chloroplast genome sequence of Viola japonica (Violaceae). Mitochondrial DNA B Resources 5: 1297-1298.  https://doi.org/10.1080/23802359.2020.1731376
  4. Cheon, K.-S., K.-A. Kim, M. Kwak, B. Lee and K.-O. Yoo. 2019. The complete chloroplast genome sequences of four Viola species (Violaceae) and comparative analyses with its congeneric species. PLoS ONE 14: e0214162. 
  5. Cheon, K.-S., J.-C. Yang, K.-A. Kim, S.-K. Jang and K.-O. Yoo. 2017. The first complete chloroplast genome sequence from Violaceae (Viola seoulensis). Mitochondrial DNA A DNA Mapping Sequencing and Analysis 28: 67-68.  https://doi.org/10.3109/19401736.2015.1110801
  6. Dong, W., C. Xu, C. Li, J. Sun, Y. Zuo, S. Shi, T. Cheng, J. Guo and S. Zhou. 2015. ycf1, the most promising plastid DNA barcode of land plants. Scientific Reports 5: 8348. 
  7. Duan, C., K. Zhang and Y. Duan. 2020. The complete chloroplast genome sequence of Viola prionantha (Violaceae). Mitochondrial DNA B Resources 5: 2727-2728.  https://doi.org/10.1080/23802359.2020.1788456
  8. Frazer, K. A., L. Pachter, P. A. Poliakov, E. M. Rubin and I. Dubchak. 2004. VISTA: Computational tools for comparative genomics. Nucleic Acids Research 32: W273-W279.  https://doi.org/10.1093/nar/gkh458
  9. GBIF Secretariat. 2022. GBIF Backbone Taxonomy. Retrieved Feb. 28, 2023, available from https://doi.org/10.15468/39omei. 
  10. Gil, H.-Y. and S.-C. Kim. 2016. Viola woosanensis, a recurrent spontaneous hybrid between V. ulleungdoensis and V. chaerophylloides (Violaceae) endemic to Ulleung Island, Korea. Journal of Plant Research 129: 807-822.  https://doi.org/10.1007/s10265-016-0830-3
  11. Go, A.-R., K.-S. Cheon and K.-O. Yoo. 2022. The complete plastid genome sequence of Viola selkirkii Pursh ex Goldie (Violaceae). Mitochondrial DNA B Resources 7: 1196-1198.  https://doi.org/10.1080/23802359.2022.2090299
  12. Goulding, S. E., K. H. Wolfe, R. G. Olmstead and C. W. Morden. 1996. Ebb and flow of the chloroplast inverted repeat. Molecular and General Genetics MGG 252: 195-206.  https://doi.org/10.1007/BF02173220
  13. Guo, Y.-Y., J.-X. Yang, M.-Z. Bai, G.-Q. Zhang and Z.-J. Liu. 2021. The chloroplast genome evolution of Venus slipper (Paphiopedilum): IR expansion, SSC contraction, and highly rearranged SSC regions. BMC Plant Biology 21: 248. 
  14. He, S., Y. Yang, Z. Li, X. Wang, Y. Guo and H. Wu. 2020. Comparative analysis of four Zantedeschia chloroplast genomes: Expansion and contraction of the IR region, phylogenetic analyses and SSR genetic diversity assessment. PeerJ 8: e9132. 
  15. Katoh, K., K. Misawa, K.-I. Kuma and T. Miyata. 2002. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30: 3059-3066.  https://doi.org/10.1093/nar/gkf436
  16. Kim, K. S. 1986. Studies of comparative morphology on the Korean Viola species. PhD dissertation, Sungkyunkwan University, Korea. 105 pp. (in Korean) 
  17. Kwak, M. 2021. The complete chloroplast genome sequence of Viola verecunda (Violaceae). Mitochondrial DNA B Resources 6: 3409-3410.  https://doi.org/10.1080/23802359.2021.1997102
  18. Lee, J., C. Choi, K. Han, S. So, Y. Hwang and M. Kim. 2012. A new species of Viola (Violaceae): V. ulleungdoensis M. Kim & J. Lee. Korean Journal of Plant Taxonomy 42: 202-206.  https://doi.org/10.11110/kjpt.2012.42.3.202
  19. Lee, Y. N. 1967. Chromosome numbers of flowering plants in Korea (1). Journal of Korean Culture and Research Institute 11: 455-478. (in Korean) 
  20. Lee, Y. N. 1969. Chromosome numbers of flowering plants in Korea (2). Journal of Korean Research Institute for Better Living 2: 141-145. (in Korean) 
  21. Lee, Y. N. and W. C. Lee. 1968. A morphological study of leaf epidermis and seeds on Korean Violets. Journal of Korean Research Institute for Better Living 1: 35-39. (in Korean) 
  22. Lee, Y. S. 2022. The palynological and seed micromorphological study on genus Viola in Korea. MS thesis, Kangwon National University, Chuncheon, Korea. 63 pp. (in Korean) 
  23. Marcussen, T., H. E. Ballard, J. Danihelka, A. R. Flores, M. V. Nicola and J. M. Watson. 2022. A revised phylogenetic classification for Viola (Violaceae). Plants 11: 2224. 
  24. Miller, M. A., W. Prefiffer and T. Schwartz. 2010. Creating the CIPRES science gateway for inference of large phylogenetic trees. In Proceedings of the Gateway Computing Environments Workshop (GCE). Institute of Electrical and Electronics Engineers, New York. Pp. 1-8. 
  25. Mohammadi Shahrestani, M., S. Saeidi Mehrvarz, T. Marcussen and N. Yousefi. 2014. Taxonomy and comparative anatomical studies of Viola sect. Sclerosium (Violaceae) in Iran. Acta Botanica Gallica 161: 343-353.  https://doi.org/10.1080/12538078.2014.932702
  26. Moon, H. and S. Kim. 2022. The chloroplast genome sequence of Viola arcuata distributed in Korea. Mitochondrial DNA B Resources 7: 1636-1638.  https://doi.org/10.1080/23802359.2022.2119106
  27. Nakai, T. 1909. Flora Koreana I. Journal of the College of Science, Imperial University of Tokyo 26: 62-74. 
  28. Nakai, T. 1919. Report on the Vegetation of the Island Ooryongto or Dagelet Island, Corea. The Government of Chosen, Seoul. P. 22. (in Japanese) 
  29. Ni, Z., Y. Ye, T. Bai, M. Xu and L.-A. Xu. 2017. Complete chloroplast genome of Pinus massoniana (Pinaceae): Gene rearrangements, loss of ndh genes, and short inverted repeats contraction, expansion. Molecules 22: 1528. 
  30. Park, J. H., M. Lee, Y. Lee and J. Lee. 2023. The complete chloroplast genome of Viola grypoceras (Violaceae). Mitochondrial DNA B Resources 8: 42-44.  https://doi.org/10.1080/23802359.2022.2160216
  31. Park, S. and S. Park. 2020. Large-scale phylogenomics reveals ancient introgression in Asian Hepatica and new insights into the origin of the insular endemic Hepatica maxima. Scientific Reports 10: 16288. 
  32. Plunkett, G. M. and S. R. Downie. 2000. Expansion and contraction of the chloroplast inverted repeat in Apiaceae subfamily Apioideae. Systematic Botany 25: 648-667.  https://doi.org/10.2307/2666726
  33. Russell, N. H. 1960. Studies in the photoperiodic responses of violets (Viola). The Southwestern Naturalist 5: 177-186.  https://doi.org/10.2307/3668940
  34. Simpson, M. G. 2019. Plant Systematics. Elsevier Inc., Amsterdam. Pp. 607-609. 
  35. Stamatakis, A. 2014. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312-1313.  https://doi.org/10.1093/bioinformatics/btu033
  36. Tillich, M., P. Lehwark, T. Pellizzer, E. S. Ulbricht-Jones, A. Fisher, R. Bock and S. Greiner. 2017. GeSeq: Versatile and accurate annotation of organelle genomes. Nucleic Acids Research 45: W6-W11.  https://doi.org/10.1093/nar/gkx391
  37. Valentine, D. H. 1950. The experimental taxonomy of two species of Viola. New Phytologist 49: 193-212. 
  38. Whang, S. S. 2002. A taxonomic study of Viola section Chamaemelanium in Korea based on morphological characters. Korean Journal of Plant Taxonomy 32: 397-416. (in Korean)  https://doi.org/10.11110/kjpt.2002.32.4.397
  39. Yang, J. Y., J.-H. Pak, M. Maki and S.-C. Kim. 2019a. Multiple origins and the population genetic structure of Rubus takesimensis (Rosaceae) on Ulleung Island: Implications for the genetic consequences of anagenetic speciation. PLoS ONE 14: e0222707. 
  40. Yang, J., K. Takayama, J.-H. Pak and S.-C. Kim. 2019b. Comparison of the whole-plastome sequence between the Bonin Islands endemic Rubus boninensis and its close relative, Rubus trifidus (Rosaceae), in the Southern Korean Peninsula. Genes 10: 774. 
  41. Yang, S., H.-D. Jang, B. M. Nam, G. Y. Chung, R.-Y. Lee, J.-H. Lee and B.-U. Oh. 2015. A floristic study of Ulleungdo Island in Korea. Korean Journal of Plant Taxonomy 45: 192-212. (in Korean)  https://doi.org/10.11110/kjpt.2015.45.2.192
  42. Yoo, K.-O. and S.-K. Jang. 2010. Infrageneric relationships of Korean Viola based on eight chloroplast markers. Journal of Systematics and Evolution 48: 474-481.  https://doi.org/10.1111/j.1759-6831.2010.00102.x
  43. Yoo, K.-O., S.-K. Jang and W.-T. Lee. 2005. Phylogeny of Korean Viola based in ITS sequences. Korean Journal of Plant Taxonomy 35: 7-23. (in Korean)  https://doi.org/10.11110/kjpt.2005.35.1.007
  44. Yoo, K.-O. and J.-H. Kim. 2006. Analysis of taxonomic relationships of Korean Viola based on trnL-trnF region sequences of chloroplast DNA. Flower Research Journal 14: 232-240. (in Korean) 
  45. Yoo, K.-O., W.-T. Lee and O.-K. Kwon. 2007. Phylogenetic relationships of Korean Viola based on RAPD, ISSR and PCR-RFLP analyses. Korean Journal of Plant Taxonomy 34: 43-61. (in Korean)  https://doi.org/10.11110/kjpt.2004.34.1.043
  46. Zhu, A., W. Guo, S. Gupta, W. Fan and J. P. Mower. 2016. Evolutionary dynamics of the plastid inverted repeat: The effects of expansion, contraction, and loss on substitution rates. New Phytologist 209: 1747-1756. https://doi.org/10.1111/nph.13743